Appendix F3

Phase II Environmental Site Assessment -Tuolumne Facility

Phase II Environmental Site Assessment Report 12001 LA GRANGE ROAD PROPERTY

Keystone, California WKA No. 12774.02 October 29, 2020

Prepared for:
Ms. Barbara Hayes
Golden State Finance Authority
1215 K Street, Suite 1650
Sacramento, CA 95814

CORPORATE OFFICE

3050 Industrial Boulevard West Sacramento, CA 95691 916.372.1434 phone 916.372.2565 fax

STOCKTON OFFICE 3422 West Hammer Lane, Suite D Stockton, CA 95219 209.234.7722 phone

CERTIFIED HYDROGEOLOGIST 209.234.7727 fax

Phase II Environmental Site Assessment Report 12001 LA GRANGE ROAD PROPERTY

Keystone, California WKA No. 12774.02 October 29, 2020

Wallace-Kuhl & Associates has prepared this *Phase II Environmental Assessment Report* (*Phase II ESA*) on behalf of the Golden State Finance Authority, for activities at the 12001 La Grange Road Property located in Keystone, Tuolumne County, California. This report was prepared in a manner consistent with the level of care and skill ordinarily exercised by professional geologists and environmental scientists. This report was prepared under the supervision of a California Professional Geologist.

WALLACE KUHL & ASSOCIATES

Matthew A. Taylor Project Manager Kurt Balasek PG, CHG Senior Hydrogeologist

Phase II Environmental Site Assessment Report

12001 LA GRANGE ROAD PROPERTY

Keystone, California WKA No. 12774.02 October 29, 2020

TABLE OF CONTENTS

1.0	INTRODUCTION	.1
2.0	BACKGROUND	.1
3.0	OBJECTIVE	.2
4.0	FIELD ACTIVITIES	.4
5.0	LABORATORY ANALYSIS	.5
6.0 6.1	FINDINGS	
6.2	Organochlorine Pesticides	7
6.3	Semi-Volatile Organic Compounds	7
6.4	Dioxins and Furans	8
7.0	CONCLUSIONS	3.
8.0	RECOMMENDATIONS	10
9.0	LIMITATIONS	10
FIGUR	RES	
1	Vicinity Map	
2	Aerial Site Map	
3	Sample Location Map	
TABLE	ES	
1	Summary of Areas of Concern and Chemicals of Potential Concern	
2	Summary of Soil Analytical Results – CAM 17 Metals	
3	Summary of Soil Analytical Results – Organochlorine Pesticides	
4	Summary of Soil Analytical Results – Semi-Volatile Organic Compounds	
5	Summary of Soil Analytical Results – Dioxins and Furans	
APPE	NDIX	
Α	Laboratory Analytical Reports and Chain-of-Custody Documentation	

Phase II Environmental Site Assessment Report

12001 LA GRANGE ROAD PROPERTY

Keystone, California WKA No. 12774.02 October 29, 2020

1.0 INTRODUCTION

Wallace-Kuhl and Associates (WKA) has prepared this report to describe activities, summarize laboratory analytical results, and present conclusions for the Phase II ESA activities completed at the 12001 La Grange Road Property (herein referred to as Site) in Keystone, California (Figure 1 and 2). WKA understands that the Site consists of 58.56 acres of land identified by Tuolumne County Assessor's Parcel Number (APN) 063-190-056. The Site is currently used to produce various landscaping products derived from bark and other wood processing remnants. Surrounding land use consisted of rural residential and commercial properties.

2.0 BACKGROUND

WKA prepared a June 3, 2020, report titled, *Phase I Environmental Site Assessment, 12001 La Grange Road Property, Keystone, California* (Phase I ESA), WKA No. 12774.01 that summarized on-site concerns and included recommendations to perform environmental sampling to investigate on-site recognized environmental conditions (RECs).

A summary of observations and findings identified in the Phase I ESA are listed below.

- The historical land use research dating back to the late 1800s revealed that the Site was
 vacant, mostly grass-covered land from at least 1893 to at least 1959, developed with at
 least two structures, a teepee burner, and lumber storage areas from at least 1976 to at
 least 1984, and has been developed with the existing mulch and bark facility since at
 least 1998.
- A feature on the historical aerial photographs from 1976 and 1984 appears to be a teepee burner on the south-central portion of the Site, north of the southwestern adjoining property.
- Two water tanks are located on the Site. One is located on the southeastern portion and the second is located on the north central portion.
- Previous assessments of the lumber mill indicated that pentachlorophenol (PCP) was present in soils; however, the locations of the samples are not known because no maps of the lumber mill facility were located.

- Given the age of historical development on the Site, it is likely that lead-based paints were used in the construction and/or maintenance of the Site structures, including the two water tanks.
- Given the documentation reviewed concerning the agency listings for neighboring facilities, none of the facilities reviewed is likely to have a negative impact on the Site.
- Based on the completion of the vapor encroachment condition (VEC) screening matrix, WKA concludes a VEC can be ruled out because a VEC does not or is not likely to exist. However, if further assessment of the Site indicates there are chemical impacts to groundwater, the VEC should be reevaluated

The Phase I ESA identified the RECs listed below.

- On-site concerns were noted from the historical operations of a lumber mill from at least 1976 to at least 1984. Previous assessments conducted at the lumber mill indicated that pentachlorophenol was present in soils.
- On-site concerns were noted from the potential use of lead-based paint on historical structures and the two water tanks.

A summary of the Phase I ESA recommendations is listed below.

- Collecting soil samples in the vicinity of the former structures, concrete features, and former teepee burner area for potential impacts to soil.
- Collecting soil samples from the vicinity of the former structures and existing water tanks
 to evaluate the potential presence of termiticides for the structures or lead from leadbased paint for both the structures and the water tanks.
- The test well on the western portion of the Site should be properly abandoned.
- If any fill material is discovered during future subsurface disturbance activities, the origin
 of the material should be determined. If the fill material origin is undetermined or it
 originated from a property with RECs, the fill material should be evaluated for potential
 impacts.

3.0 OBJECTIVE

The objective of this Phase II ESA is to address the recommendations from the Phase I ESA. Specifically, to collect data necessary for determining whether surface soils have been impacted with chemicals of potential concern (COPCs) associated with historical Site activities, building maintenance activities, and chemical storage at the Site and whether any reported COPCs pose

an unacceptable health risk to human health or the environment. The COPCs associated with historical Site activities are listed below.

- Organochlorine pesticides (OCPs);
- Arsenic;
- Copper;
- Chromium VI;
- Lead;
- Pentachlorophenol;
- 2,3,4,6-Tetrachlorophenol;
- Semi-volatile organic compounds (SVOCs);
- Creosotes (2-Methylphenol and 3 & 4 Methyl phenol);
- CAM 17 metals; and,
- Dioxins and furans,

Table 1 shown below, presents a summary of areas of concern and their respective COPCs to be evaluated and the number of samples to be collected.

Table 1 – Chemicals of Potential Concern

Table 1 – Chemicals of Fotermal Concern			
Structure/Area of Concern Collect		COPCs & Number of Samples	
Dip Tank Areas	Soil	Arsenic – Two 4:1 composite samples Chromium VI - Two 4:1 composite samples Copper – Two 4:1 composite samples Creosotes (2-Methylphenol and 3 & 4 Methyl phenol – Two 4:1 composite samples Pentachlorophenol – Two 4:1 composite samples 2,3,4,6-Tetrachlorophenol – Two 4:1 composite samples	
Former Structure located at the Northern Portion of Site	Soil	OCPs –Two 4:1 composite samples Total Lead – Eight discrete samples	
Former Structure Located at the Central Portion of Site	Soil	OCPs – Two 4:1 composite samples Total Lead – Eight Four discrete samples	
Former Teepee Burner Area	Soil	CAM 17 Metals - One 4:1 composite sample SVOCs - One 4:1 composite sample	

Structure/Area of Concern	Collected Media	COPCs & Number of Samples
		Dioxins/Furans – One 4:1 composite
		sample
		Arsenic – One 4:1 composite samples
		Chromium VI – One 4:1 composite samples
		Copper – One 4:1 composite samples
		Creosotes (2-Methylphenol and 3 & 4
Log Deck Pond Area	Soil	Methyl phenol – One 4:1 composite
Log Deck Folia Alea	3011	samples
		Pentachlorophenol – One 4:1 composite
		samples
		2,3,4,6-Tetrachlorophenol – One 4:1
		composite samples
		Arsenic – One 4:1 composite samples
		Chromium VI – One 4:1 composite samples
		Copper – One 4:1 composite samples
		Creosotes (2-Methylphenol and 3 & 4
Lumber Storage Area	Soil	Methyl phenol – One 4:1 composite
Lumber Storage Area	Jon	samples
		Pentachlorophenol – One 4:1 composite
		samples
		2,3,4,6-Tetrachlorophenol – One 4:1
		composite samples
Elevated Water Tank 1	Soil	Total Lead – Four discrete samples
Elevated Water Tank 2	Soil	Total Lead – Four discrete samples

The structures/areas of concern at the Site are shown in Figure 3.

4.0 FIELD ACTIVITIES

WKA utilized the State of California, Department of Toxics Substances Control (DTSC) Interim Guidance Evaluation of School Sites with Potential Soil Contamination as a Result of Lead from Lead-Based Paint, Organochlorine Pesticides from Termiticides, and Polychlorinated Biphenyls from Electrical Transformers (Revised June 9, 2006) to guide the preparation of the scope of services, selection of the number of sample locations and potential contaminants appropriate for evaluating Site soil.

Prior to field sampling activities, WKA used geographic information system (GIS) software to locate the proposed soil samples at the Site. The locations of the proposed soil samples were then loaded into a high precision global positioning system receiver (GPSr) so that sample points could be pinpointed in the field.

On October 15, 2020, WKA the GPSr to navigate to the sample locations in the field. WKA used hand sampling methods and manual coring equipment to collect 44 soil samples from the interval of zero to six inches below ground surface (bgs). The soil samples were collected from structures/areas of concern summarized in Table 1 above. The sample locations are shown in Figure 3. WKA used the GPSr to record the location of each sample.

On the day of sample collection, the property was vacant with knee high volunteer vegetation covering portions of the property that were not occupied by existing foundations or structures. The sampled soil consisted of mostly brown, dry, fine-grained, sandy silt with sparse ½ to ½ inch angular gravel and reddish brown, dry, sandy clay.

Each soil sample was collected into a new laboratory provided four or eight-ounce glass jar that was sealed using a TeflonTM-lined lid. WKA labeled each jar to indicate a unique sample number, sample location, time and date collected, and sampler's identification. Samples were preserved in a chilled, thermally insulated container. The samples were transported with completed chain-of-custody forms to the analytical laboratories.

5.0 LABORATORY ANALYSIS

The soil samples collected from the Site were submitted with completed chain-of-custody forms to California Laboratory Services (a State Water Resources Control Board-certified laboratory) for chemical analyses. Soil samples collected from the former Teepee Burner area were submitted with completed chain-of-custody forms to Eurofins TestAmerica (a State Water Resources Control Board-certified laboratory) for chemical analyses.

The soil samples were analyzed for all or a portion of the chemical analyses listed below.

- CAM 17 Metals using EPA Method 6000/7000 series;
- Total arsenic using EPA Method 6010B;
- Total Copper using EPA Method 6010B;
- Chromium VI using EPA Method 7199;
- Total lead using EPA Method 6010B;

- Organochlorine pesticides (OCPs) using EPA Method 8081;
- Semi-volatile organic compounds (SVOCs) using EPA Method 8270;
- Creosotes (2-Methylphenol and 3 & 4 Methyl phenol) using EPA Method 8270;
- Pentachlorophenol using EPA Method 8270;
- 2,3,4,6-Tetrachlorophenol using EPA Method 8270; and,
- Dioxins/Furans using EPA Method 8290 D/F.

6.0 FINDINGS

Results of the laboratory analyses are summarized in sections 6.1 through 6.4 below. A summary of analytical results of soil samples are presented in Tables 2 through 5. The Department of Toxic Substance Control's Screening Levels (DTSC-SL) and the United States Environmental Protection Agency's Regional Screening Levels (USEPA RSLs) for protecting human health under residential and commercial land uses are summarized in Tables 2 through 5.

Complete laboratory analytical reports and chain-of-custody documentation are included in Appendix A.

6.1 Metals

With the exception of arsenic, hexavalent chromium, lead, and mercury, metals were not reported at concentrations that exceed their respective DTSC-SL and USEPA RSLs for protecting human health under residential or commercial land uses.

Concentrations of arsenic in surface soil ranged from less than the reporting limit of 2.0 milligrams per kilogram (mg/kg) to 3.7 mg/kg which are above the Department of Toxic Substance Control's Human and Ecological Risk Office Human Health Risk Assessment Note 3 Screening Level (DTSC-SL) of 0.36 mg/kg for protecting human health under a commercial scenario. However, the United States Geological Survey's (USGS) Geochemical and Mineralogical Maps for the Conterminous United States, shows that arsenic concentrations in the area around the Site in Keystone, CA range from 5.2 mg/kg to 6.0 mg/kg. This map and WKA's repeated experience show that naturally occurring arsenic in California soils often exceeds the residential and commercial DTSC-SLs, and the concentrations of arsenic reported within soils remaining at the Site are consistent with naturally occurring arsenic levels.

Hexavalent chromium was not reported in soil samples above the laboratory reporting limit. This statement is generally enough evidence for the Site soil to meet the necessary environmental screening levels for commercial land use. However, the residential and commercial screening level for hexavalent chromium promulgated by the regulatory agencies (derived from toxicity reference values) for sensitive land use such as school sites and commercial land uses is so low that the laboratory reporting limit is higher than those levels deemed protective of human health. In this case, we asked the laboratory to provide both the laboratory reporting limits (RL) and the lower, but theoretical method detection limits (MDLs). After applying the MDLs, hexavalent chromium reported below the MDL of 2.0 mg/kg which is below the commercial screening level of 6.2 mg/kg.

Lead was reported in the soil samples at concentrations ranging from 5.1 mg/kg to 140 mg/kg. Lead was reported in soil samples S30, S31, and S34 at concentrations of 84 mg/kg, 140 mg/kg, and 100 mg/kg, respectively. These concentrations are below the DTSC-SL for lead for commercial land use of 320 mg/kg but exceed the DTSC-SL for residential land use of 80 mg/kg.

Mercury was reported in composite sample S21-S24 collected in the former Teepee Burner area at a concentration of 7.1 mg/kg, which exceeds the DTSC-SL for mercury for commercial land use of 4.4 mg/kg.

6.2 Organochlorine Pesticides

Organochlorine pesticides (OCPs) were not reported at concentrations that exceed their respective DTSC-SL and USEPA RSLs for protecting human health under residential or commercial land uses.

6.3 Semi-Volatile Organic Compounds

Analysis for Semi-Volatile Organic Compounds (SVOCs) including 2-Methylphenol, 3 & 4 Methyl phenol, pentachlorophenol, and 2,3,4,6-tetrachlorophenol revealed no compounds above their respective laboratory reporting limits. Similar to the Hexavalent Chromium discussion above, this statement is generally enough evidence for the Site soil to meet the necessary environmental screening levels for commercial land use. However, some of the residential and commercial screening levels for several SVOCs promulgated by the regulatory agencies (derived from toxicity reference values) for sensitive land use such as school sites and commercial land uses are so low that the laboratory reporting limits are higher than those levels deemed protective of human health. In this case, we asked the laboratory to provide both the laboratory reporting limits (RL) and the lower, but theoretical method detection limits (MDLs).

After applying the MDLs, only three SVOC compounds are still above their respective commercial screening levels.

The MDLs for dibenz (a,h) anthracene (920 micrograms per kilogram (μg/kg)), hexachlorobenzene (865 μg/kg), and bis(2-chloroethyl)ether (805 μg/kg) exceed their respective commercial screening levels of 310 μg/kg, 860 μg/kg, and 470 μg/kg, respectively.

6.4 Dioxins and Furans

Laboratory analysis for dioxin/furan revealed a concentration of 190 pg/g (picograms per gram or parts per trillion) in composite sample S21-S24 collected from the former Teepee Burner area. Dioxin/furan results are compared to The World Health Organization (WHO) toxic equivalency quotient (TEQ) for total dioxin/furan. Currently, the WHO uses the 2010 TEQ. The commercial screening levels TEQ ranges from 220 pg/g to 700 pg/g.

7.0 CONCLUSIONS

Results of WKA's Phase II Environmental Site Assessment showed no concentrations of OCPs in the soil samples at levels that pose a threat to human health under a commercial land use scenario.

With the exception of arsenic, hexavalent chromium, and mercury, metals were not reported in the soil samples at levels that pose a threat to human health under a commercial land use scenario. Arsenic exceeded the residential and commercial screening levels. However, levels observed in samples from the site below naturally occurring arsenic in the Keystone Area soils as demonstrated by USGS' *Geochemical and Mineralogical Maps for the Conterminous United States* for the Keystone area. Other metals, with the exception of lead and mercury, were also detected at concentrations below their respective residential ESLs. WKA identified three soil samples collected within the former structure located at the northern portion of the Site having concentrations of lead exceeding the residential ESL of 80 mg/kg but below the commercial screening level of 320 mg/kg.

Hexavalent chromium was not reported above the laboratory reporting limit (RL) of 10 mg/kg or the lower method detection limit above of 2.0 mg/kg. Using the lower, MDL value, hexavalent chromium is below the commercial screening level of 6.2 mg/kg.

Mercury was reported in the composite sample collected from the former Teepee Burner area at a concentration of 7.1 mg/kg, which exceeds the commercial screening level of 4.4 mg/kg. This mercury concentration is anomalous in the area of the Teepee Burner because mercury is a volatile metal.

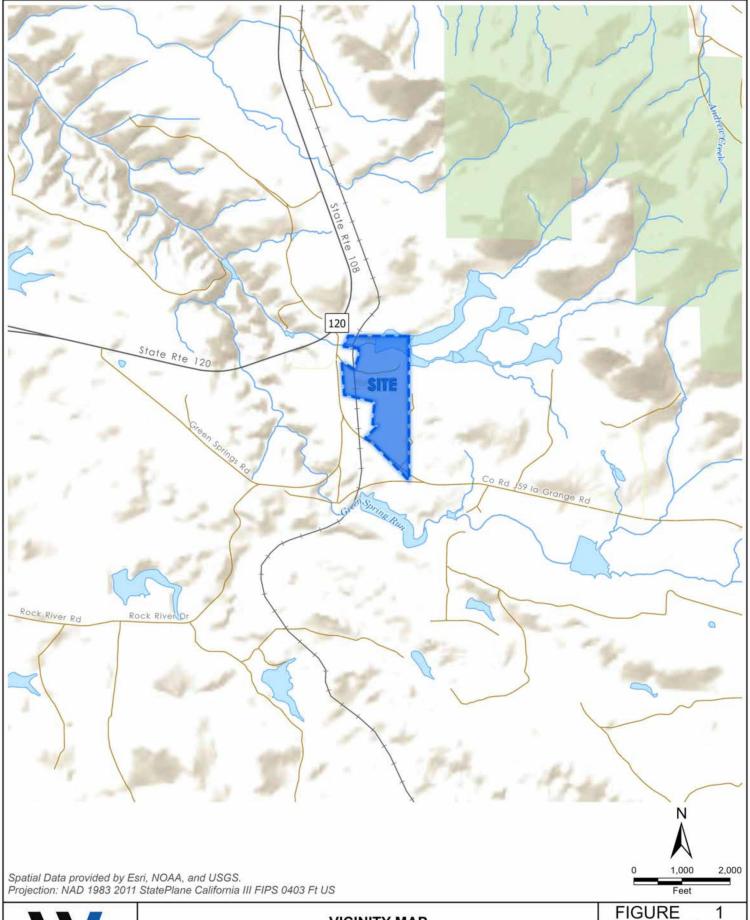
With the exception of dibenz (a,h) anthracene, hexachlorobenzene, and bis(2-chloroethyl)ether SVOCs including 2-Methylphenol, 3 & 4 Methyl phenol, pentachlorophenol, and 2,3,4,6-tetrachlorophenol in the soil samples are at levels that pose a threat to human health under a commercial land use scenario. Although the respective MDLs for dibenz(a,h)anthracene, hexachlorobenzene, and bis(2-chloroethyl)ether are slightly over their commercial screening levels there is no evidence that these compounds exist on the Site in any concentration, however they cannot be entirely ruled out.

Dioxins and furans were reported in the composite soil sample collected from the Teepee Burner Area. The total dioxin/furan toxic equivalency (TEQ) result for the composite soil sample of 190 pg/g is below the 2010 WHO TEQ soil remediation goal of 220 pg/g to 700 pg/g for commercial land use.

The sampling and analysis performed by WKA revealed mercury and arsenic at levels that would pose health risks for commercial development of the property. However, the arsenic concentrations were determined to be consistent with those naturally occurring levels already present in the area and there is no regulatory authority to investigate naturally occurring compounds at background concentrations. The mercury identified on the site is likely from an anthropogenic (man-made) source as the naturally occurring form of mercury (Cinnabar) is not found in the Sierra Nevada foothills around Jamestown and Sonora.

WKA discussed the laboratory detection limits and method detection limits for the SVOC analysis with the laboratory director. The laboratory director stated that the samples analyzed required a 5:1 dilution and that future dilution would not result in lower detection limits. Further, running samples in an undiluted state, would likely damage the laboratory equipment. Based on this discussion, the technical infeasibility of lower reporting limits and the lack of evidence suggesting use of these compounds on the site, WKA concludes that they are likely not present at a concentration that would pose a threat to human health above a commercial screening levels.

8.0 RECOMMENDATIONS

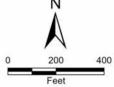

WKA recommends analyzing a select set of samples previously collected for mercury to determine if there is a more wide-spread occurrence across the property. Assuming no wide - spread occurrence, WKA recommends collecting additional samples from and around the footprint of the former Teepee Burner to identify the lateral and vertical extent of the elevated mercury. Once the extent of elevated mercury is identified, WKA recommends excavation and appropriate disposal of the impacted soil.

If the overall Site use changes to a more restrictive land use such as residential, schools, hospitals or day care facilities WKA would recommend collecting additional soil samples in the former Teepee Area for analysis of the SVOCs, dibenz (a,h) anthracene, hexachlorobenzene, and bis(2-chloroethyl)ether, mercury, and dioxins/furans to delineate the extent of those compounds exceeding residential land use. Similarly, WKA would recommend additional sampling for lead around sample locations S30, S31, and S34 where concentrations exceeded the residential screening level of 80 mg/kg but fell far below the commercial screening level of 320 mg/kg. The delineated impacted soil should then be excavated and disposed of at an appropriate licensed landfill.

9.0 LIMITATIONS

The statements and results presented in this report are based upon the scope of work described above and on observations made on the dates of WKA's applicable fieldwork. The summary report was prepared in a manner consistent with the level of care and skill ordinarily exercised by Professional Geologists. Work was performed using a degree of skill consistent with that of competent environmental consulting firms performing similar work in the area. No recommendation is made as to the suitability of the property for any purpose. The result of the investigation does not preclude the possibility that materials currently, or in the future, defined as hazardous are present on the site. This report is applicable only to the investigated site and should not be used for any other site. No warranty is expressed or implied.

VICINITY MAP

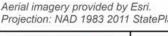

12001 LA GRANGE ROAD PROPERTY

Keystone, California

FIGURE	1
DRAWN BY	RWO
CHECKED BY	KCG
PRCJECT MGR	MAT
DATE	11/2020
WKA NO. 12	774.02

Approximate Site Boundary

Aerial imagery provided by Esri. Projection: NAD 1983 2011 StatePlane California III FIPS 0403 Ft US



AERIAL SITE MAP

12001 LA GRANGE ROAD PROPERTY Keystone, California

FIGURE	2
DRAWN BY	RWO
CHECKED BY	KCG
PRCJECT MGR	MAT
DATE	11/2020
WKA NO. 12	774.02

Approximate Site Boundary

Projection: NAD 1983 2011 StatePlane California III FIPS 0403 Ft US

12001 LA GRANGE ROAD PROPERTY Keystone, California

FIGURE	3A
DRAWN BY	RWO
CHECKED BY	KCG
PRCJECT MGR	MAT
DATE	11/2020
WKA NO 13	774 02

Feet

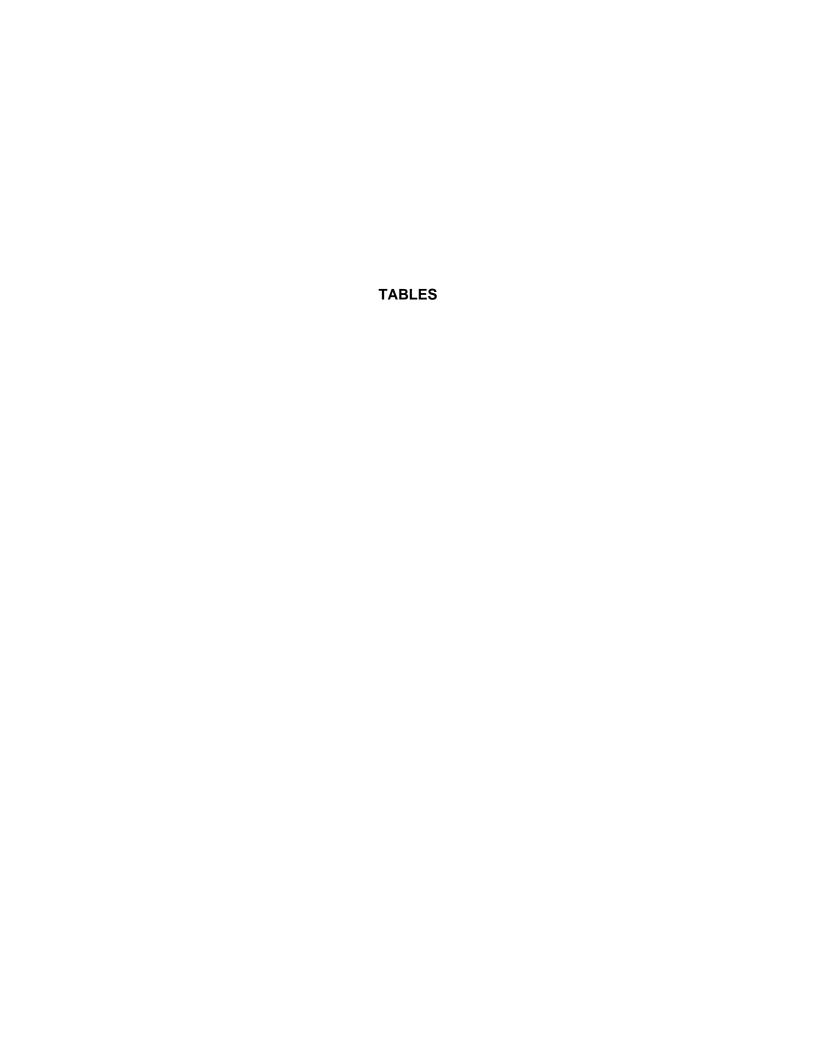
150

• Approximate Soil Sample Location

Approximate Study Area

Approximate Site Boundary

Aerial imagery provided by Esri. Projection: NAD 1983 2011 StatePlane California III FIPS 0403 Ft US



SAMPLE LOCATION MAP (SOUTH)

12001 LA GRANGE ROAD PROPERTY

Keystone, California

FIGURE	3B
DRAWN BY	RWO
CHECKED BY	KCG
PRCJECT MGR	MAT
DATE	10/2020
WKA NO. 12	774.02

Table 2 Summary of Soil Analytical Results for Metals 12001 LA GRANGE ROAD PROPERTY

WKA No. 12774.02

											EPA	A 6000/7000	Series Meth	hods							
Sample Location	Sample ID	Sample Date	Sample Depth	Antimony	Arsenic	Barium	Beryllium	Cadmium	Hexavalent Chromium*	Chromium	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
						(Concentratio	ns reported	n milligrams	per kilogran	n (mg/kg)										
	S1	10/15/2020	0 - 0.5										6.6								
Elevated Water	S2	10/15/2020	0 - 0.5										7.2								
Tank 1	S3	10/15/2020	0 - 0.5										10								
	S4	10/15/2020	0 - 0.5										12								
Lumber Storage Area	S5-S8	10/15/2020	0 - 0.5		<2.0				<2.0			83									
	S 9	10/15/2020	0 - 0.5										20								
	S10	10/15/2020	0 - 0.5										10								
	S11	10/15/2020	0 - 0.5										8.8								
Former Structure Located at the	S12	10/15/2020	0 - 0.5										8.7								
Central Portion of Site	S13	10/15/2020	0 - 0.5										5.9								
	S14	10/15/2020	0 - 0.5										5.1								
	S15	10/15/2020	0 - 0.5										7.5								
	S16	10/15/2020	0 - 0.5										7.7								
	S25	10/15/2020	0 - 0.5										25								
Elevated Water	S26	10/15/2020	0 - 0.5										25								
Tank 2	S27	10/15/2020	0 - 0.5										35								
	S28	10/15/2020	0 - 0.5										17								

Table 2 Summary of Soil Analytical Results for Metals 12001 LA GRANGE ROAD PROPERTY

WKA No. 12774.02

											EP	A 6000/7000	Series Meth	nods							
Sample Location	Sample ID	Sample Date	Sample Depth	Antimony	Arsenic	Barium	Beryllium	Cadmium	Hexavalent Chromium*	Chromium	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
							Concentratio	ns reported	n milligrams	per kilograr	n (mg/kg)										
	S29	10/15/2020	0 - 0.5										23								
	S30	10/15/2020	0 - 0.5										84								
	S31	10/15/2020	0 - 0.5										140								
Former Structure Located at the	S32	10/15/2020	0 - 0.5										16								
Northern Portion of Site	S33	10/15/2020	0 - 0.5										19								
	S34	10/15/2020	0 - 0.5										100								
	S35	10/15/2020	0 - 0.5										16								
	S36	10/15/2020	0 - 0.5										66								
D. T	S17-SS20	10/15/2020	0 - 0.5		<2.0				<2.0			110									
Dip Tank Areas	S37-S40	10/15/2020	0 - 0.5		<2.0				<2.0			110									
Former Teepee Burner Area	S21-S24	10/15/2020	0 - 0.5	<5.0	3.7	62	<1.0	<1.0		43	28	110	20	7.1	<1.0	91	<5.0	<1.0	<2.0	200	81
Log Deck Pond	S41-S44	10/15/2020	0 - 0.5		<2.0				<2.0			93									
	DTSC-SL		Residential	NE	0.11	NE	1,600	910	0.3	NE	NE	NE	80	1.0	NE	15,000	NE	NE	NE	NE	NE
	D 100-0E		Commercial	NE	0.36	NE	6,900	4,000	6.2	NE	NE	NE	320	4.4	NE	64,000	NE	NE	NE	NE	NE
	USEPA-RSL		Residential	31	0.68	15,000	160	71	0.3	NE	23	3,100	400	11	390	NE	390	390	NE	390	23,000
			Commercial	470	3.0	220,000	2,300	980	6.3	NE	350	47,000	800	46	5,800	NE	5,800	5,800	NE	5,800	350,000

Notes:

(USEPA-RSL) U.S. Environmental Protection Agency's Regional Screening Levels for Constituents in Soil (May 2020)

(DTSC-SL) Department of Toxic Substance Control's Human and Ecological Risk Office's Human Health Risk Assessment Note 3 Recommended Screening Levels for Constituents in Soil (June 2020)

(<) less than laboratory reporting limit(s)

(bgs) Below ground surface

(NE) Not established

(---) Not Analyzed

(*) Reported using the Method Detection Limit

Summary of Soil Analytical Results for Organochlorine Pesticides

12001 LA GRANGE ROAD PROPERTY

WKA No. 12774.02

													EPA	Method 8081	Α								
Sample Locatoin	Sample ID	Sample Date	Sample Depth (feet bgs)	4,4′-DDD	4,4'-DDE	4,4′-DDT	Aldrin	alpha-BHC	beta-BHC	Chlordane-technical	delta-BHC	Dieldrin	Endosulfan I	Endosulfan II	Endosulfan sulfate	Endrin	Endrin aldehyde	gamma-BHC (Lindane)	Heptachlor	Heptachlor epoxide	Methoxychlor	Mirex	Toxaphene
								Cond	centration	s reporte	d in micro	grams per	kilogram (μg	kg)									
Former Structure Located at the	S9-S12	10/15/2020	0 - 0.5	<17	<17	<17	<5.0	<8.5	<8.5	<17	<8.5	<5.0	<8.5	<17	<17	<17	<17	<8.5	<8.5	<8.5	<85	<17	<100
Central Portion of Site	S13-S16	10/15/2020	0 - 0.5	<17	<17	<17	<5.0	<8.5	<8.5	<17	<8.5	<5.0	<8.5	<17	<17	<17	<17	<8.5	<8.5	<8.5	<85	<17	<100
Former Structure Located at the	S29-S32	10/15/2020	0 - 0.5	<17	<17	<17	<5.0	<8.5	<8.5	<17	<8.5	<5.0	<8.5	<17	<17	<17	<17	<8.5	<8.5	<8.5	<85	<17	<100
Northern Portion of Site	S33-S36	10/15/2020	0 - 0.5	<17	<17	<17	<5.0	<8.5	<8.5	<17	<8.5	<5.0	<8.5	<17	<17	<17	<17	<8.5	<8.5	<8.5	<85	<17	<100
	DTCC C		Residential	2,300	2,000	1,900	39	NE	NE	1,700	NE	34	NE	NE	NE	19,000	NE	NE	130	70	320,000	36	450
	D15C-SL		Commerical	6,200	9,300	7,100	180	NE	NE	6,100	NE	93	NE	NE	NE	160,000	NE	NE	630	330	2,600,000	170	1,200
			Residential	1,900	2,000	1,900	39	NE	NE	1,700	NE	34	470,000	470,000	NE	19,000	NE	NE	130	70	320,000	36	490
	USEPA-RSL		Commerical	9,600	9,300	8,500	180	NE	NE	7,700	NE	140	7,000,000	7,000,000	NE	250,000	NE	NE	630	330	4,100,000	170	2,100

Notes:

(USEPA RSL) U.S. Environmental Protection Agency's Regional Screening Level (May 2020)

(DTSC-SL) Department of Toxic Substance Control's Human and Ecological Risk Office's Human Health Risk Assessment Note 3 (June 2020)

< less than laboratory reporting limit(s)

(NE) Not established

(bgs) below ground surface

Summary of Analytical Results for Semi Volatile Organic Compounds 12001 LA GRANGE ROAD PROPERTY

WKA No.12774.02

															EPA Method 82	70C									
Sample Location	Sample ID	Sample Date	Sample Depth (feet bgs)	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	2,3,4,6-Tetrachlorophenol	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene (2,4-DNT)	2,6-Dinitrotoluene (2,6-DNT)*	2-Chloronaphthalene	2-Chlorophenol	2-Methyinaphthalene	2-Methylphenol	2-Nitroaniline	2-Nitrophenol	3 & 4-Methylphenol	3,3-Dichlorobenzidine*	3-Nitroaniine	4,6-Dinitro-2-methylphenol
												Concentration	s reported in mid	rograms per kilo	gram (µg/kg)										
Lumber Storage Area	S5-S8	10/15/2020	0 - 0.5	<1650	<1650	<1650	<1650	<3350	<1650	<1650	<1650	<1650	<4150	<1650	<945	<1650	<1650	<1650	<1650	<4150	<1650	<1650	<450	<4150	<4150
Die Teels Asses	S17-S20	10/15/2020	0 - 0.5	<1650	<1650	<1650	<1650	<3350	<1650	<1650	<1650	<1650	<4150	<1650	<945	<1650	<1650	<1650	<1650	<4150	<1650	<1650	<450	<4150	<4150
Dip Tank Areas	S37-S40	10/15/2020	0 - 0.5	<1650	<1650	<1650	<1650	<3350	<1650	<1650	<1650	<1650	<4150	<1650	<945	<1650	<1650	<1650	<1650	<4150	<1650	<1650	<450	<4150	<4150
Former Teepee Burner Area	S21-S24	10/15/2020	0 - 0.5	<1650	<1650	<1650	<1650	<3350	<1650	<1650	<1650	<1650	<4150	<1650	<945	<1650	<1650	<1650	<1650	<4150	<1650	<1650	<450	<4150	<4150
Log Deck Ponds	S41-S44	10/15/2020	0 - 0.5	<1650	<1650	<1650	<1650	<3350	<1650	<1650	<1650	<1650	<4150	<1650	<945	<1650	<1650	<1650	<1650	<4150	<1650	<1650	<450	<4150	<4150
DTSC	:-SI	Resid	ential	7,800	NE	NE	NE	1,900,000	6,300,000	7,800	190,000	1,300,000	130,000	1,700	360	4,100,000	340,000	190,000	3,200,000	630,000	NE	3,200,000	450	NE	5,100
Disc	, 52	Comn	nerical	35,000	NE	NE	NE	16,000,000	53,000,000	21,000	1,600,000	11,000,000	1,100,000	4,700	990	27,000,000	3,900,000	1,300,000	26,000,000	5,200,000	NE	26,000,000	1,200	NE	42,000
USEPA	A-RSL	Resid	ential	24,000	1,800,000	NE	2,600	1,900,000	6,300,000	49,000	190,000	1,300,000	130,000	1,700	360	4,800,000	390,000	240,000	NE	630,000	NE	NE	1,200	NE	NE
00217		Comn	nerical	110,000	9,300,000	NE	11,000	25,000,000	82,000,000	210,000	2,500,000	16,000,000	1,600,000	7,400	1,500	60,000,000	5,800,000	3,000,000	NE	8,000,000	NE	NE	5,100	NE	NE

														EPA Met	hod 8270C									
Sample Location	Sample ID	Sample Date	Sample Depth (feet bgs)	4-Bromophenyl phenyl ether	4-Chloro-3-methylphenol	4-Chloroaniine	4- Chlorophenyl phenyl ether	4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenaphthylene	Anthracene	Benzo (a) anthracene	Benzo (a) pyrene*	Benzo (b) fluoranthene	Benzo (g,h,i) perylene	Benzo (k) Fluoranthene	Benzoic Acid	Benzyl alcohol	Bis(2-chloroethoxy)methane	Bis(2-chloroethyl)ether*	Bis(2-chloroisopropyl)ether	Bis(2-ethylhexyl)phthalate	Butyl benzyl phthalate
											Concen	trations reported	in micrograms	per kilogram (µg/	/kg)									
Lumber Storage Area	S5-S8	10/15/2020	0 - 0.5	<1650	<1650	<1650	<1650	<4150	<4150	<1650	<1650	<1650	<1650	<1020	<1650	<1650	<1650	<4150	<1650	<1650	<805	<1650	<1650	<1650
Dip Tank Areas	S17-S20	10/15/2020	0 - 0.5	<1650	<1650	<1650	<1650	<4150	<4150	<1650	<1650	<1650	<1650	<1020	<1650	<1650	<1650	<4150	<1650	<1650	<805	<1650	<1650	<1650
DIP TAIK Aleas	S37-S40	10/15/2020	0 - 0.5	<1650	<1650	<1650	<1650	<4150	<4150	<1650	<1650	<1650	<1650	<1020	<1650	<1650	<1650	<4150	<1650	<1650	<805	<1650	<1650	<1650
Former Teepee Burner Area	S21-S24	10/15/2020	0 - 0.5	<1650	<1650	<1650	<1650	<4150	<4150	<1650	<1650	<1650	<1650	<1020	<1650	<1650	<1650	<4150	<1650	<1650	<805	<1650	<1650	<1650
Log Deck Ponds	S41-S44	10/15/2020	0 - 0.5	<1650	<1650	<1650	<1650	<4150	<4150	<1650	<1650	<1650	<1650	<1020	<1650	<1650	<1650	<4150	<1650	<1650	<805	<1650	<1650	<1650
DTSC	. 61	Resid	lential	NE	6,300,000	NE	NE	27,000	NE	3,300,000	NE	17,000,000	1,100	110	1,100	NE	11,000	250,000,000	6,300,000	190,000	100	2,000,000	39,000	290,000
DISC	OL	Comr	nerical	NE	53,000,000	NE	NE	74,000	NE	23,000,000	NE	130,000,000	12,000	1,300	13,000	NE	130,000	2,100,000,000	53,000,000	1,600,000	470	16,000,000	110,000	780,000
USEPA	, pei	Resid	lential	NE	NE	NE	NE	27,000	NE	3,600	NE	18,000,000	1,100	110	1,100	NE	11,000	250,000,000	6,300,000	190,000	230	NE	39,000	290,000
USEPA	N-NOL	Comr	nerical	NE	NE	NE	NE	110,000	NE	45,000,000	NE	230,000,000	21,000	2,100	21,000	NE	210,000	3,300,000,000	82,000,000	2,500,000	1,000	NE	160,000	1,200,000

Summary of Analytical Results for Semi Volatile Organic Compounds

12001 LA GRANGE ROAD PROPERTY

WKA No.12774.02

				1												FPA Meti	nod 8270C											
Sample Location	Sample ID	Sample Date	Sample Depth (feet bgs)	Chrysene	Dibenz (a,h) anthracene*	Dibenzofuran	Diethyl phthalate	Dimethyl phthalate	Di-n-butyl phthalate	Di-n-octyl phthalate	Flouranthene	Flourene	Hexachlorobenzene*	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno (1,2,3,-cd) pyrene	Isophorone	Naphthalene	Nitrobenzene (NB)	N-Nitrosodimethylamine	N-Nitrosodi-n-propylamine	N-Nitrosodiphenylamine	Pentachlorophenol*	Phenanthrene	Phenol	Pyrene	Pyridine
		<u>'</u>											Conce	ntrations reported	d in micrograms	oer kilogram (µg/l	(g)							•				
Lumber Storag Area	S5-S8	10/15/2020	0 - 0.5	<1650	<920	<1650	<1650	<1650	<1650	<1650	<1650	<1650	<865	<1650	<1650	<1650	<1650	<1650	<1650	<1650	<1650	<1650	<1650	<845	<1650	<1650	<1650	<3350
Die Teels Asse	S17-S20	10/15/2020	0 - 0.5	<1650	<920	<1650	<1650	<1650	<1650	<1650	<1650	<1650	<865	<1650	<1650	<1650	<1650	<1650	<1650	<1650	<1650	<1650	<1650	<845	<1650	<1650	<1650	<3350
Dip Tank Area	S37-S40	10/15/2020	0 - 0.5	<1650	<920	<1650	<1650	<1650	<1650	<1650	<1650	<1650	<865	<1650	<1650	<1650	<1650	<1650	<1650	<1650	<1650	<1650	<1650	<845	<1650	<1650	<1650	<3350
Former Teeper Burner Area	S21-S24	10/15/2020	0 - 0.5	<1650	<920	<1650	<1650	<1650	<1650	<1650	<1650	<1650	<865	<1650	<1650	<1650	<1650	<1650	<1650	<1650	<1650	<1650	<1650	<845	<1650	<1650	<1650	<3350
Log Deck Ponds	S41-S44	10/15/2020	0 - 0.5	<1650	<920	<1650	<1650	<1650	<1650	<1650	<1650	<1650	<865	<1650	<1650	<1650	<1650	<1650	<1650	<1650	<1650	<1650	<1650	<845	<1650	<1650	<1650	<3350
DTC	2.61	Resid	lential	110,000	28	66,000	51,000,000	NE	6,300,000	630,000	NE	NE	190	1,200	NE	NE	1,100	570,000	2,000	NE	NE	NE	110,000	1,000	NE	19,000,000	1,800,000	58,000
DTS	J-0L	Comr	nerical	1,300,000	310	650,000	420,000,000	NE	53,000,000	5,300,000	NE	NE	860	5,300	NE	NE	13,000	1,600,000	6,500	NE	NE	NE	300,000	2,000	NE	160,000,000	13,000,000	530,000
USEP	N DOL	Resid	lential	110,000	110	73,000	51,000,000	NE	NE	630,000	NE	NE	210	1,200	1,800	1,800	1,100	570,000	2,000	5,100	2	78	110,000	1,000	NE	19,000,000	1,800,000	78,000
USEP	4-ROL	Comr	nerical	2,100,000	2,100	1,000,000	660,000,000	NE	NE	8,200,000	NE	NE	960	5,300	7,500	8,000	21,000	2,400,000	8,600	22,000	34	330	470,000	4,000	NE	250,000,000	23,000,000	1,200,000

(USEPA RSL) U.S. Environmental Protection Agency's Regional Screening Levels for Constituents in Soil (May 2020)

(DTSC-SL) Department of Toxic Substance Control's Human and Ecological Risk Office's Human Health Risk Assessment Note 3 Recommended Screening Levels for Constituents in Soil (Jume 2020)

(<) less than laboratory reporting limit(s) (bgs) Below ground surface (NE) Not established (*) Reported using the Method Detection Limit

Summary of Soil Analytical Results for Dioxins/Furans

12001 LA GRANGE ROAD PROPERTY

WKA No. 12774.02

															EF	PA Metho	od 8290 I	D/F											
Sample Location	Sample ID	Sample Date	Sample Depth (feet bgs)	2,3,7,8-TCDD	1,2,3,7,8-PeCDD	1,2,3,4,7,8-HxCDD	1,2,3,6,7,8-HxCDD	1,2,3,7,8,9-HxCDD	1,2,3,4,6,7,8-HpCDD	ОСРР	Total TCDD	Total PeCDD	Total HxCDD	Total HpCDD	2,3,7,8-TCDF	1,2,3,7,8-PeCDF	2,3,4,7,8-PeCDF	1,2,3,4,7,8-HxCDF	1,2,3,6,7,8-HxCDF	2,3,4,6,7,8-HxCDF	1,2,3,7,8,9-HpCDF	1,2,3,4,6,7,8-HpCDF	1,2,3,4,7,8,9-HpCDF	OCDF	Total TCDF	Total PeCDF	Total HxCDF	Total HpCDF	2005 WHO TEQ
										C	Concentra	ations rep	orted in p	oicogram	s per gra	m (pg/g)													
Former Teepee Burner Area	S21-S24	10/15/2020	0 - 0.5	2.6	18	30	380	94	7,400 GEB	67,000 GEB	39q	150q	1,600	13,000 GB	2.4	2.1J	2.8J	20G	14G	8.2G	62G	1,400 GB	62G	5,200 EB	21q	96	1,500G	7,500 GB	190
DTSC - HER	O Note 2 Di	oxin- 2010	Residential																										50
WHO TEQ S	oil Remedia	ation Goals	Commercial																										220 - 700

Notes:

(USEPA RSL) U.S. Environmental Protection Agency's Regional Screening Levels for Constituents in Soil (May 2020)

(DTSC-SL) Department of Toxic Substance Control's Human and Ecological Risk Office's Human Health Risk Assessment Note 2 Dioxin, issue date April 2017 - WHO TEQ Soil Remediation Goals (May 2010)

(<) less than laboratory reporting limit(s)

(bgs) Below ground surface

pg/g picogram per gram or parts per trillion

The analytical results include the Toxic Equivalency (TEQ) calculation using the 2010 World Health Organization's WHO) toxic equivalency factors (TEFs)

Qualifier: Qualifier Description:

B Compound was found in the blank and sample.

E Result exceeded calibration range.

G The reported quantitation limit has been raised due to an exhibited elevated noise or matrix interference.

J Result is less that the reporting limit but greater than or equal to the method detection limit and the concentration is an approximate value q
The reported result is the estimated maximum possible concentration of this analyte, quantitated using the theoretical ion ratio. The

measured ion ratio does not meet qualitative identification criteria and indicates a possible interference.

APPENDIX A

Laboratory Analytical Reports and Chain-of-Custody Documentation

October 28, 2020 CLS Work Order #: 20J0923

COC #:

Matthew Taylor Wallace Kuhl & Associates- West Sacramento 3050 Industrial Boulevard West Sacramento, CA 95691

Project Name: 12001 LA Grange Road Property

Enclosed are the results of analyses for samples received by the laboratory on 10/15/20 14:00. Samples were analyzed pursuant to client request utilizing EPA or other ELAP approved methodologies. I certify that the results are in compliance both technically and for completeness.

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely,

James Liang, Ph.D. Laboratory Director

CA SWRCB ELAP Accreditation/Registration number 1233

10/28/20 13:55

Wallace Kuhl & Associates- West Sacramento

Project: 12001 LA Grange Road Property
Project Number: 12774.02 CLS Work Order #: 20J0923

3050 Industrial Boulevard West Sacramento, CA 95691

Project Manager: Matthew Taylor COC #:

CAM 17 Metals

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
S21-S24 (20J0923-29) Soil	Sampled: 10/15/20 09:09	Received	: 10/15/20 14:0	00						
Antimony	ND	0.39	5.0	mg/kg	10	2008485	10/16/20	10/16/20	EPA 6020	
Arsenic	3.7	0.77	2.0	n	"	"	"	"	"	
Barium	62	0.57	1.0	n	1	"	**	10/19/20	EPA 6010B	
Beryllium	ND	0.10	1.0	"	"	"	**	"	n	
Cadmium	ND	0.31	1.0	n	10	"	n	10/16/20	EPA 6020	
Chromium	43	0.31	1.0	"	1	"	Ħ	10/19/20	EPA 6010B	
Cobalt	28	0.20	1.0	"	"	"	**	"	"	
Copper	110	0.82	1.0	n	"	"	**	11	n	
Lead	20	1.2	5.0	"	10	"	**	10/16/20	EPA 6020	
Mercury	7.1	0.72	2.0	"	100	2008534	10/19/20	10/21/20	EPA 7471A	
Molybdenum	ND	0.40	1.0	"	1	2008485	10/16/20	10/19/20	EPA 6010B	
Nickel	91	0.49	1.0	"	"	**	**	**	"	
Selenium	1.6	0.21	5.0	"	10	"	"	10/16/20	EPA 6020	J
Silver	0.86	0.76	1.0	"	1	**	"	10/19/20	EPA 6010B	J
Thallium	0.21	0.044	2.0	"	10	**	**	10/16/20	EPA 6020	J
Vanadium	200	0.78	1.0	**	1	**	**	10/19/20	EPA 6010B	
Zinc	81	0.39	1.0	"	n	11	"	"	n	

10/28/20 13:55

Wallace Kuhl & Associates- West Sacramento

Project: 12001 LA Grange Road Property

3050 Industrial Boulevard

Project Number: 12774.02

CLS Work Order #: 20J0923

West Sacramento, CA 95691 Project Manager: Matthew Taylor COC #:

Conventional Chemistry Parameters by APHA/EPA Methods

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Sampled: 10/15/20 07:49				Ditation	Butch	Теригеа	7 mary 2cu	Wiemod	110103
55-56 (2000)25-07) Sull	3ampicu. 10/15/20 07.45	Accerved.	10/13/20 14:00							-
Hexavalent Chromium	ND	2.0	10	μg/kg	1	2008537	10/19/20	10/20/20	EPA 7199	
S17-S20 (20J0923-24) Soil	Sampled: 10/15/20 08:4	6 Receive	ed: 10/15/20 14:	00						
Hexavalent Chromium	ND	2.0	10	μg/kg	1	2008537	10/19/20	10/20/20	EPA 7199	
S37-S40 (20J0923-48) Soil	Sampled: 10/15/20 10:3	9 Receive	ed: 10/15/20 14:	00						
Hexavalent Chromium	ND	2.0	10	μg/kg	1	2008537	10/19/20	10/20/20	EPA 7199	
S41-S44 (20J0923-53) Soil	Sampled: 10/15/20 11:1	1 Receive	ed: 10/15/20 14:	00						
Hexavalent Chromium	ND	2.0	10	μg/kg	1	2008537	10/19/20	10/20/20	EPA 7199	

Wallace Kuhl & Associates- West Sacramento

Project: 12001 LA Grange Road Property

3050 Industrial Boulevard West Sacramento, CA 95691 Project Number: 12774.02

CLS Work Order #: 20J0923

Project Manager: Matthew Taylor

COC #:

Analyte	Resul	t MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
S1 (20J0923-01) Soil Sa	mpled: 10/15/20 07:32	Received: 10	0/15/20 14:00							
Lead	6.6	0.18	2.5	mg/kg	1	2008465	10/16/20	10/16/20	EPA 6010B	
S2 (20J0923-02) Soil Sa	mpled: 10/15/20 07:33	Received: 10	0/15/20 14:00							
Lead	7.2	0.18	2.5	mg/kg	1	2008465	10/16/20	10/16/20	EPA 6010B	
S3 (20J0923-03) Soil Sa	mpled: 10/15/20 07:35	Received: 10	0/15/20 14:00							
Lead	10	0.18	2.5	mg/kg	1	2008465	10/16/20	10/16/20	EPA 6010B	-
S4 (20J0923-04) Soil Sa	mpled: 10/15/20 07:38	Received: 10	0/15/20 14:00							
Lead	12	0.18	2.5	mg/kg	1	2008465	10/16/20	10/16/20	EPA 6010B	
S5-S8 (20J0923-09) Soil	Sampled: 10/15/20 07:4	9 Received	l: 10/15/20 14:00							
Arsenic	1.8	0.85	2.0	mg/kg	1	2008465	10/16/20	10/16/20	EPA 6010B	J
Copper	83	0.30	1.0	**	"	"	"	**	н	
S9 (20J0923-10) Soil Sa	mpled: 10/15/20 08:41	Received: 10	0/15/20 14:00							
Lead	20	0.18	2.5	mg/kg	1	2008465	10/16/20	10/16/20	EPA 6010B	
S10 (20J0923-11) Soil S	ampled: 10/15/20 08:44	Received: 1	10/15/20 14:00							
Lead	10	0.18	2.5	mg/kg	1	2008465	10/16/20	10/16/20	EPA 6010B	
S11 (20J0923-12) Soil S	ampled: 10/15/20 08:47	Received: 1	10/15/20 14:00							
Lead	8.8	0.18	2.5	mg/kg	1	2008465	10/16/20	10/16/20	EPA 6010B	
S12 (20J0923-13) Soil S	sampled: 10/15/20 08:52	Received:	10/15/20 14:00							
Lead	8.7	0.18	2.5	mg/kg	1	2008465	10/16/20	10/16/20	EPA 6010B	

Wallace Kuhl & Associates- West Sacramento

Project: 12001 LA Grange Road Property

3050 Industrial Boulevard

Project Number: 12774.02

CLS Work Order #: 20J0923

West Sacramento, CA 95691

Project Manager: Matthew Taylor

COC #:

Analyte	Resul	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
S13 (20J0923-15) Soil	Sampled: 10/15/20 08:53	Received: 1	0/15/20 14:00							
Lead	5.9	0.18	2.5	mg/kg	1	2008465	10/16/20	10/16/20	EPA 6010B	
S14 (20J0923-16) Soil	Sampled: 10/15/20 08:58	Received: 1	0/15/20 14:00							
Lead	5.1	0.18	2.5	mg/kg	1	2008465	10/16/20	10/16/20	EPA 6010B	
S15 (20J0923-17) Soil	Sampled: 10/15/20 09:00	Received: 1	0/15/20 14:00							
Lead	7.5	0.18	2.5	mg/kg	1	2008465	10/16/20	10/16/20	EPA 6010B	_
S16 (20J0923-18) Soil	Sampled: 10/15/20 09:03	Received: 1	0/15/20 14:00							
Lead	7.7	0.18	2.5	mg/kg	1	2008465	10/16/20	10/16/20	EPA 6010B	
S17-S20 (20J0923-24) S	Soil Sampled: 10/15/20 08	:46 Receiv	ed: 10/15/20 14:	00						
Arsenic	1.2	0.85	2.0	mg/kg	1	2008465	10/16/20	10/16/20	EPA 6010B	J
Copper	110	0.30	1.0	"	"	**	**	**	n	
S25 (20J0923-30) Soil	Sampled: 10/15/20 09:59	Received: 1	0/15/20 14:00							
Lead	25	0.18	2.5	mg/kg	1	2008465	10/16/20	10/16/20	EPA 6010B	
S26 (20J0923-31) Soil	Sampled: 10/15/20 10:01	Received: 1	0/15/20 14:00							
Lead	25	0.18	2.5	mg/kg	1	2008465	10/16/20	10/16/20	EPA 6010B	
S27 (20J0923-32) Soil	Sampled: 10/15/20 10:02	Received: 1	0/15/20 14:00							
Lead	35	0.18	2.5	mg/kg	1	2008465	10/16/20	10/16/20	EPA 6010B	
S28 (20J0923-33) Soil	Sampled: 10/15/20 10:04	Received: 1	0/15/20 14:00							
Lead	17	0.18	2.5	mg/kg	1	2008465	10/16/20	10/16/20	EPA 6010B	

Wallace Kuhl & Associates- West Sacramento

Project: 12001 LA Grange Road Property

3050 Industrial Boulevard West Sacramento, CA 95691 Project Number: 12774.02

CLS Work Order #: 20J0923

Project Manager: Matthew Taylor

COC #:

			Reporting							
Analyte	Resul	t MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
S29 (20J0923-34) Soil	Sampled: 10/15/20 10:03	Received:	10/15/20 14:00							
Lead	23	0.18	2.5	mg/kg	1	2008517	10/19/20	10/19/20	EPA 6010B	
S30 (20J0923-35) Soil	Sampled: 10/15/20 10:04	Received:	10/15/20 14:00							
Lead	84	0.18	2.5	mg/kg	1	2008517	10/19/20	10/19/20	EPA 6010B	
S31 (20J0923-36) Soil	Sampled: 10/15/20 10:07	Received:	10/15/20 14:00							
Lead	140	0.18	2.5	mg/kg	1	2008517	10/19/20	10/19/20	EPA 6010B	
S32 (20J0923-37) Soil	Sampled: 10/15/20 10:09	Received:	10/15/20 14:00							
Lead	16	0.18	2.5	mg/kg	1	2008517	10/19/20	10/19/20	EPA 6010B	
S33 (20J0923-39) Soil	Sampled: 10/15/20 10:13	Received:	10/15/20 14:00							
Lead	19	0.18	2.5	mg/kg	1	2008517	10/19/20	10/19/20	EPA 6010B	
S34 (20J0923-40) Soil	Sampled: 10/15/20 10:14	Received:	10/15/20 14:00							
Lead	100	0.18	2.5	mg/kg	1	2008517	10/19/20	10/19/20	EPA 6010B	
S35 (20J0923-41) Soil	Sampled: 10/15/20 10:16	Received:	10/15/20 14:00							
Lead	16	0.18	2.5	mg/kg	1	2008517	10/19/20	10/19/20	EPA 6010B	
S36 (20J0923-42) Soil	Sampled: 10/15/20 10:19	Received:	10/15/20 14:00							
Lead	66	0.18	2.5	mg/kg	1	2008517	10/19/20	10/19/20	EPA 6010B	
S37-S40 (20J0923-48) S	Soil Sampled: 10/15/20 10	:39 Receiv	ved: 10/15/20 14:	00						
Arsenic	1.5	0.85	2.0	mg/kg	1	2008517	10/19/20	10/19/20	EPA 6010B	J
Copper	110	0.30	1.0	"	"	"	"	11	11	

Wallace Kuhl & Associates- West Sacramento

Project: 12001 LA Grange Road Property

3050 Industrial Boulevard West Sacramento, CA 95691 Project Number: 12774.02

CLS Work Order #: 20J0923

Project Manager: Matthew Taylor

COC #:

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
S41-S44 (20J0923-53) Soil	Sampled: 10/15/20 11:11	Receive	d: 10/15/20 14:0	00						
Arsenic	1.0	0.85	2.0	mg/kg	1	2008517	10/19/20	10/19/20	EPA 6010B	J
Copper	93	0.30	1.0	"	**	"	"	**	n	

Wallace Kuhl & Associates- West Sacramento

Project: 12001 LA Grange Road Property

3050 Industrial Boulevard

West Sacramento, CA 95691

Project Number: 12774.02 CLS Work Order #: 20J0923

Project Manager: Matthew Taylor COC #:

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
S9-S12 (20J0923-14) Soil	Sampled: 10/15/20 08:41	Received	: 10/15/20 14:0	0						QRL-8
4,4′-DDD	ND	0.48	17	μg/kg	5	2008522	10/19/20	10/20/20	EPA 8081A	
4,4'-DDE	ND	0.29	17	"	11	"	"	"	п	
4,4'-DDT	ND	0.60	17	11	"	"	"	**	н	
Aldrin	ND	0.51	5.0	**	"	**	"	**	11	
alpha-BHC	ND	0.15	8.5	**	"	"	n	"	н	
beta-BHC	ND	1.7	8.5	11	"	"	"	"	н	
Chlordane-technical	ND	14	17	**	"	"	"	**	11	
delta-BHC	ND	0.23	8.5	"	**	**	**	**	11	
Dieldrin	ND	0.25	5.0	"	11	"	"	"	п	
Endosulfan I	ND	0.27	8.5	"	11	"	"	"	п	
Endosulfan II	ND	0.54	17	"	**	"	"	**	11	
Endosulfan sulfate	ND	0.35	17	"	**	"	"	11	n	
Endrin	ND	0.75	17	"	"	"	"	"	п	
Endrin aldehyde	ND	0.86	17	**	n	"	"	"	н	
gamma-BHC (Lindane)	ND	1.3	8.5	**	n	"	"	11	н	
Heptachlor	ND	0.47	8.5	**	"	"	"	**	п	
Heptachlor epoxide	ND	0.28	8.5	**	n	"	"	"	п	
Methoxychlor	ND	1.1	85	11	"	"	"	**	н	
Mirex	ND	3.7	17	**	"	**	"	**	11	
Toxaphene	ND	20	100	"	11	"	**	"	11	
Surrogate: Decachlorobiphe	envl		132 %	52	-141	"	**	"	"	
Surrogate: Tetrachloro-meta	•		79 %	46	-139	"	"	"	"	
S13-S16 (20J0923-19) Soil	Sampled: 10/15/20 08:53	Receive	d: 10/15/20 14:	00						QRL-8
4,4'-DDD	ND	0.48	17	μg/kg	5	2008522	10/19/20	10/20/20	EPA 8081A	
4,4'-DDE	ND	0.29	17	"	"	"	**	"	п	
4,4'-DDT	ND	0.60	17	"	"	"	11	"	п	
Aldrin	ND	0.51	5.0	"	"	"	**	11	п	
alpha-BHC	ND	0.15	8.5	"	"	"	**	"	н	
beta-BHC	ND	1.7	8.5	"	11	11	11	n	н	

Wallace Kuhl & Associates- West Sacramento

Project: 12001 LA Grange Road Property

3050 Industrial Boulevard

Project Number: 12774.02 CLS Work Order #: 20J0923

West Sacramento, CA 95691 Project Manager: Matthew Taylor

COC #:

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
S13-S16 (20J0923-19) Soil	Sampled: 10/15/20 08:53	Receive	d: 10/15/20 14:	:00						QRL-8
Chlordane-technical	ND	14	17	μg/kg	5	2008522	n	10/20/20	EPA 8081A	
delta-BHC	ND	0.23	8.5	"	"	"	"	"	н	
Dieldrin	ND	0.25	5.0	"	11	"	"	"	н	
Endosulfan I	ND	0.27	8.5	"	**	**	"	**	н	
Endosulfan II	ND	0.54	17	"	**	"	"	"	н	
Endosulfan sulfate	ND	0.35	17	"	11	"	"	"	н	
Endrin	ND	0.75	17	"	"	"	"	"	н	
Endrin aldehyde	ND	0.86	17	"	**	**	"	**	н	
gamma-BHC (Lindane)	ND	1.3	8.5	"	"	"	"	"	н	
Heptachlor	ND	0.47	8.5	"	"	"	"	"	н	
Heptachlor epoxide	ND	0.28	8.5	"	"	"	"	11	н	
Methoxychlor	ND	1.1	85	"	n	"	**	11	н	
Mirex	ND	3.7	17	"	"	"	"	11	н	
Toxaphene	ND	20	100	"	11	11	11	11	п	
Surrogate: Decachlorobiphei	nyl		149 %	52	-141	"	n	"	"	QS-4
Surrogate: Tetrachloro-meta-	•		79 %	46	-139	"	n	"	"	
S29-S32 (20J0923-38) Soil	Sampled: 10/15/20 10:03	Receive	d: 10/15/20 14:	:00						QRL-8
4,4′-DDD	ND	0.48	17	μg/kg	5	2008522	10/19/20	10/20/20	EPA 8081A	
4,4′-DDE	ND	0.29	17	"	"	11	11	**	н	
4,4'-DDT	ND	0.60	17	"	"	**	Ħ	"	**	
Aldrin	ND	0.51	5.0	"	"	"	Ħ	"	н	
alpha-BHC	ND	0.15	8.5	"	"	"	"	"	н	
beta-BHC	ND	1.7	8.5	"	"	"	"	**	н	
Chlordane-technical	ND	14	17	**	**	"	"	**	н	
delta-BHC	ND	0.23	8.5	11	"	"	"	"	н	
Dieldrin	ND	0.25	5.0	**	"	"	"	**	н	
Endosulfan I	ND	0.27	8.5	**	"	"	"	**	н	
Endosulfan II	ND	0.54	17	**	"	"	"	11	н	
Endosulfan sulfate	ND	0.35	17	,,	,,	,,		"	"	

Wallace Kuhl & Associates- West Sacramento

Project: 12001 LA Grange Road Property

3050 Industrial Boulevard

Project Number: 12774.02 CLS Work Order #: 20J0923

West Sacramento, CA 95691 Project Manager: Matthew Taylor

COC #:

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
S29-S32 (20J0923-38) Soil	Sampled: 10/15/20 10:03	Receive	d: 10/15/20 14	:00						QRL-8
Endrin	ND	0.75	17	μg/kg	5	2008522	n	10/20/20	EPA 8081A	
Endrin aldehyde	ND	0.86	17	n	"	11	"	"	п	
gamma-BHC (Lindane)	ND	1.3	8.5	n	"	11	"	"	н	
Heptachlor	ND	0.47	8.5	"	"	11	"	**	n	
Heptachlor epoxide	ND	0.28	8.5	"	"	11	"	**	п	
Methoxychlor	ND	1.1	85	n	"	11	m.	"	п	
Mirex	ND	3.7	17	**	"	"	n	"	n	
Toxaphene	ND	20	100	**	**	"	11	11	11	
Surrogate: Decachlorobiphe	enyl		162 %	52	?-141	"	11	"	"	QS-4
Surrogate: Tetrachloro-meta			62 %	46	-139	"	Ħ	"	"	
S33-S36 (20J0923-43) Soil	Sampled: 10/15/20 10:13	Receive	d: 10/15/20 14	:00						QRL-8
4,4′-DDD	ND	0.48	17	μg/kg	5	2008522	10/19/20	10/20/20	EPA 8081A	
4,4'-DDE	ND	0.29	17	"	"	11	"	**	п	
4,4'-DDT	ND	0.60	17	"	"	11	"	"	н	
Aldrin	ND	0.51	5.0	"	"	11	"	"	н	
alpha-BHC	ND	0.15	8.5	"	"	"	n	"	"	
beta-BHC	ND	1.7	8.5	"	"	"	Ħ	"	н	
Chlordane-technical	ND	14	17	"	"	11	"	"	н	
delta-BHC	ND	0.23	8.5	"	"	11	"	"	11	
Dieldrin	ND	0.25	5.0	**	**	"	"	**	11	
Endosulfan I	ND	0.27	8.5	"	"	11	"	"	п	
Endosulfan II	ND	0.54	17	11	"	"	n	"	n	
Endosulfan sulfate	ND	0.35	17	n	"	11	n	"	н	
Endrin	ND	0.75	17	**	"	11	n	"	n	
Endrin aldehyde	ND	0.86	17	"	n	"	u,	"	n	
gamma-BHC (Lindane)	ND	1.3	8.5	"	n	"	n	"	n	
Heptachlor	ND	0.47	8.5	**	"	"	n	"	n	
Heptachlor epoxide	ND	0.28	8.5	"	"	"	n	"	n	
Methoxychlor	ND	1.1	85	"	"	11	"	"	n	

Wallace Kuhl & Associates- West Sacramento

Project: 12001 LA Grange Road Property

3050 Industrial Boulevard West Sacramento, CA 95691 Project Number: 12774.02

CLS Work Order #: 20J0923

Project Manager: Matthew Taylor

COC #:

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
S33-S36 (20J0923-43) Soil Sample	ed: 10/15/20 10:13	Receive	d: 10/15/20 14	:00						QRL-8
Mirex	ND	3.7	17	μg/kg	5	2008522	**	10/20/20	EPA 8081A	
Toxaphene	ND	20	100	"	"	"	n	n	n	
Surrogate: Decachlorobiphenyl			232 %	52	-141	"	ti.	"	"	QS-4
Surrogate: Tetrachloro-meta-xylene			90 %	46	-139	"	"	"	"	

Wallace Kuhl & Associates- West Sacramento

Project: 12001 LA Grange Road Property

3050 Industrial Boulevard

Project Number: 12774.02 CLS Work Order #: 20J0923 COC #:

West Sacramento, CA 95691

Project Manager: Matthew Taylor

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
S5-S8 (20J0923-09) Soil	Sampled: 10/15/20 07:49	Received:	10/15/20 14:00							QRL-8
1,2,4-Trichlorobenzene	ND	805	1650	μg/kg	5	2008446	10/16/20	10/19/20	EPA 8270C	
1,2-Dichlorobenzene	ND	820	1650	"	"	"	TT .	n	н	
1,3-Dichlorobenzene	ND	820	1650	"	"	"	"	"	н	
1,4-Dichlorobenzene	ND	805	1650	"	"	"	"	n	n	
2,3,4,6-Tetrachlorophenol	ND	1650	3350	"	**	"	"	n	н	
2,4,5-Trichlorophenol	ND	875	1650	"	11	"	"	"	н	
2,4,6-Trichlorophenol	ND	905	1650	"	**	**	"	"	н	
2,4-Dichlorophenol	ND	830	1650	**	**	**	"	"	н	
2,4-Dimethylphenol	ND	970	1650	"	11	"	"	"	н	
2,4-Dinitrophenol	ND	535	4150	"	"	"	"	"	н	
2,4-Dinitrotoluene (2,4-DN	ND ND	1100	1650	"	"	"	"	n	н	
2,6-Dinitrotoluene (2,6-DN	ND ND	945	1650	"	"	"	"	n	н	
2-Chloronaphthalene	ND	845	1650	"	"	"	"	n	п	
2-Chlorophenol	ND	810	1650	"	"	"	"	"	н	
2-Methylnaphthalene	ND	850	1650	"	"	"	"	n	н	
2-Methylphenol	ND	785	1650	"	"	"	"	"	н	
2-Nitroaniline	ND	945	4150	"	"	"	"	"	н	
2-Nitrophenol	ND	935	1650	"	"	"	"	"	н	
3 & 4-Methylphenol	ND	795	1650	**	"	"	"	"	н	
3,3'-Dichlorobenzidine	ND	450	3350	"	"	"	"	"	н	
3-Nitroaniline	ND	1040	4150	11	"	"	"	"	н	
4,6-Dinitro-2-methylpheno	l ND	1290	4150	11	"	"	"	n	н	
4-Bromophenyl phenyl eth	er ND	895	1650	**	"	"	"	n	н	
4-Chloro-3-methylphenol	ND	840	1650	"	"	"	"	n	п	
4-Chloroaniline	ND	620	1650	"	"	"	"	n	п	
4-Chlorophenyl phenyl eth	er ND	875	1650	"	"	"	"	n	н	
4-Nitroaniline	ND	1350	4150	"	"	"	"	"	n	
4-Nitrophenol	ND	1020	4150	"	"	"	**	"	п	
Acenaphthene	ND	875	1650	11	"	"	17	"	п	
Acenaphthylene	ND	880	1650	"	"	"	**	"	н	
Anthracene	ND	890	1650	**	"	"	"	"	н	

Wallace Kuhl & Associates- West Sacramento

Project: 12001 LA Grange Road Property

3050 Industrial Boulevard

Project Number: 12774.02 CLS Work Order #: 20J0923

COC #:

West Sacramento, CA 95691

Project Manager: Matthew Taylor

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
S5-S8 (20J0923-09) Soil	Sampled: 10/15/20 07:49	Received:	10/15/20 14:00							QRL-8
Benzo (a) anthracene	ND	1150	1650	μg/kg	5	2008446	u	10/19/20	EPA 8270C	
Benzo (a) pyrene	ND	1020	1650	"	"	"	n	"	н	
Benzo (b) fluoranthene	ND	925	1650	"	"	"	'n	п	н	
Benzo (g,h,i) perylene	ND	800	1650	**	"	"	n	n	n	
Benzo (k) fluoranthene	ND	1020	1650	"	"	**	TI TI	n	н	
Benzoic acid	ND	1500	4150	"	"	11	"	11	н	
Benzyl alcohol	ND	810	1650	"	"	**	"	11	н	
Bis(2-chloroethoxy)methan	e ND	800	1650	"	"	**	"	n	н	
Bis(2-chloroethyl)ether	ND	805	1650	"	11	**	"	n	н	
Bis(2-chloroisopropyl)ether	r ND	775	1650	"	11	"	"		н	
Bis(2-ethylhexyl)phthalate	ND	705	1650	"	11	"	"	"	н	
Butyl benzyl phthalate	ND	1010	1650	"	11	"	n	"	н	
Chrysene	ND	885	1650	11	11	"	"	11	н	
Dibenz (a,h) anthracene	ND	920	1650	"	11	"	"	"	н	
Dibenzofuran	ND	880	1650	"	11	"	n	"	н	
Diethyl phthalate	ND	880	1650	"	11	"	"	11	н	
Dimethyl phthalate	ND	835	1650	11	11	"	"	11	н	
Di-n-butyl phthalate	ND	855	1650	"	11	"	"	"	н	
Di-n-octyl phthalate	ND	815	1650	"	11	"	n	"	н	
Fluoranthene	ND	960	1650	"	11	"	"	11	н	
Fluorene	ND	895	1650	11	11	"	TI.	11	н	
Hexachlorobenzene	ND	865	1650	11	"	"	n	11	н	
Hexachlorobutadiene	ND	840	1650	"	11	"	n	"	н	
Hexachlorocyclopentadiene	e ND	955	1650	"	"	"	n	n	п	
Hexachloroethane	ND	830	1650	"	"	"	n	"	п	
Indeno (1,2,3-cd) pyrene	ND	810	1650	**	"	"	n	"	н	
Isophorone	ND	785	1650	**	"	"	n	"	n	
Naphthalene	ND	835	1650	"	"	"	rr ·	"	п	
Nitrobenzene (NB)	ND	825	1650	"	"	"	n	11	п	
N-Nitrosodimethylamine	ND	805	1650	"	"	"	n	"	н	
N-Nitrosodi-n-propylamine	ND	775	1650	"	"	"	n	"	н	

Wallace Kuhl & Associates- West Sacramento

Project: 12001 LA Grange Road Property

3050 Industrial Boulevard West Sacramento, CA 95691 Project Number: 12774.02 CLS Work Order #: 20J0923 COC #:

Project Manager: Matthew Taylor

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
S5-S8 (20J0923-09) Soil	Sampled: 10/15/20 07:49	Received:	10/15/20 14:00							QRL-8
N-Nitrosodiphenylamine	ND	940	1650	μg/kg	5	2008446	11	10/19/20	EPA 8270C	
Pentachlorophenol	ND	845	4150	11	"	"	"	"	н	
Phenanthrene	ND	860	1650	**	n	n	"	"	н	
Phenol	ND	775	1650	"	**	n	"	11	н	
Pyrene	ND	430	1650	"	"	"	"	"	н	
Pyridine	ND	120	3350	11	"	"	11	п	п	
Surrogate: 2,4,6-Tribrom	pphenol		56 %	19	-122	"	**	"	"	
Surrogate: 2-Fluorobiphe	nyl		45 %	30	-115	"	"	"	"	
Surrogate: 2-Fluorophene	ol		43 %	25	-121	"	"	"	"	
Surrogate: Nitrobenzene-	d5		43 %	23	-120	"	"	"	"	
Surrogate: Phenol-d6			43 %	10	-110	"	"	"	"	
Surrogate: Terphenyl-dl4			38 %	18	-137	"	n	"	"	
S17-S20 (20J0923-24) Sc	oil Sampled: 10/15/20 08:4	6 Receive	d: 10/15/20 14:0	00						QRL-8
1,2,4-Trichlorobenzene	ND	805	1650	μg/kg	5	2008446	10/16/20	10/19/20	EPA 8270C	
1,2-Dichlorobenzene	ND	820	1650	"	"	"	11	"	n	
1,3-Dichlorobenzene	ND	820	1650	"	"	"	**	11	**	
1,4-Dichlorobenzene	ND	805	1650	"	"	"	n	"	n	
2,3,4,6-Tetrachlorophenol	ND	1650	3350	"	"	n	n .	"	н	
2,4,5-Trichlorophenol	ND	875	1650	"	**	"	"	**	н	
2,4,6-Trichlorophenol	ND	905	1650	"	"	"	"	**	n	
2,4-Dichlorophenol	ND	830	1650	"	"	"	"	"	н	
2,4-Dimethylphenol	ND	970	1650	**	11	n	"	"	н	
2,4-Dinitrophenol	ND	535	4150	**	n	"	"	11	н	
2,4-Dinitrotoluene (2,4-D	NT) ND	1100	1650	"	"	"	"	11	н	
2,6-Dinitrotoluene (2,6-D	NT) ND	945	1650	"	"	"	"	11	п	
2-Chloronaphthalene	ND	845	1650	11	"	"	"	11	н	
-			4.5	**	**	**	"	**	11	
	ND	810	1650							
2-Chlorophenol 2-Methylnaphthalene	ND ND	810 850	1650 1650	**	"	"	"	n	п	

Wallace Kuhl & Associates- West Sacramento

Project: 12001 LA Grange Road Property

3050 Industrial Boulevard West Sacramento, CA 95691 Project Number: 12774.02 CLS Work Order #: 20J0923

Project Manager: Matthew Taylor

COC #:

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
S17-S20 (20J0923-24) Soil	Sampled: 10/15/20 08:46	Receive	d: 10/15/20 14:	:00						QRL-8
2-Nitroaniline	ND	945	4150	μg/kg	5	2008446	n	10/19/20	EPA 8270C	
2-Nitrophenol	ND	935	1650	"	"	"	n	"	н	
3 & 4-Methylphenol	ND	795	1650	"	"	"	'n	п	н	
3,3'-Dichlorobenzidine	ND	450	3350	"	"	"	n	n	n	
3-Nitroaniline	ND	1040	4150	"	"	"	T T	n	н	
4,6-Dinitro-2-methylphenol	ND	1290	4150	"	"	**	"	11	н	
4-Bromophenyl phenyl ether	ND	895	1650	**	"	**	"	11	н	
4-Chloro-3-methylphenol	ND	840	1650	**	"	**	"	n	н	
4-Chloroaniline	ND	620	1650	"	11	11	"	n	н	
4-Chlorophenyl phenyl ether	ND	875	1650	"	11	11	"		н	
4-Nitroaniline	ND	1350	4150	n	11	**	"	"	н	
4-Nitrophenol	ND	1020	4150	n	11	11	n	"	н	
Acenaphthene	ND	875	1650	n	11	11	"	11	н	
Acenaphthylene	ND	880	1650	"	11	11	"	"	н	
Anthracene	ND	890	1650	n	11	**	n	"	н	
Benzo (a) anthracene	ND	1150	1650	"	11	11	"	11	н	
Benzo (a) pyrene	ND	1020	1650	"	11	11	"		н	
Benzo (b) fluoranthene	ND	925	1650	"	11	11	"	"	н	
Benzo (g,h,i) perylene	ND	800	1650	n	11	**	n	"	н	
Benzo (k) fluoranthene	ND	1020	1650	"	11	11	"	11	н	
Benzoic acid	ND	1500	4150	n	11	11	TI.	11	н	
Benzyl alcohol	ND	810	1650	n	"	"	n	11	н	
Bis(2-chloroethoxy)methane	ND	800	1650	n	11	**	n	"	н	
Bis(2-chloroethyl)ether	ND	805	1650	n	"	11	n	n	п	
Bis(2-chloroisopropyl)ether	ND	775	1650	"	"	11	n	"	п	
Bis(2-ethylhexyl)phthalate	ND	705	1650	"	"	"	n	11	n	
Butyl benzyl phthalate	ND	1010	1650	"	"	"	n	"	n	
Chrysene	ND	885	1650	"	"	"	rr ·	"	п	
Dibenz (a,h) anthracene	ND	920	1650	"	"	"	n	11	п	
Dibenzofuran	ND	880	1650	"	"	"	n	11	н	
Diethyl phthalate	ND	880	1650	**	"	**	"	"	н	

Wallace Kuhl & Associates- West Sacramento

Project: 12001 LA Grange Road Property

3050 Industrial Boulevard West Sacramento, CA 95691 Project Number: 12774.02 CLS Work Order #: 20J0923 COC #:

Project Manager: Matthew Taylor

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
S17-S20 (20J0923-24) Soil	Sampled: 10/15/20 08:46	Receive	d: 10/15/20 14:	00						QRL-8
Dimethyl phthalate	ND	835	1650	μg/kg	5	2008446	"	10/19/20	EPA 8270C	
Di-n-butyl phthalate	ND	855	1650	"	"	"	"	"	н	
Di-n-octyl phthalate	ND	815	1650	"	"	**	"	"	н	
Fluoranthene	ND	960	1650	"	"	**	"	n	**	
Fluorene	ND	895	1650	"	"	**	"	n n	н	
Hexachlorobenzene	ND	865	1650	"	"	**	"	n n	н	
Hexachlorobutadiene	ND	840	1650	"	"	**	"	"	н	
Hexachlorocyclopentadiene	ND	955	1650	"	"	**	"	"	н	
Hexachloroethane	ND	830	1650	"	n	11	"	"	н	
Indeno (1,2,3-cd) pyrene	ND	810	1650	"	n	**	"	"	н	
Isophorone	ND	785	1650	"	n	"	"	"	н	
Naphthalene	ND	835	1650	"	n	"	"	"	н	
Nitrobenzene (NB)	ND	825	1650	"	11	"	"	"	п	
N-Nitrosodimethylamine	ND	805	1650	"	"	"	"	"	н	
N-Nitrosodi-n-propylamine	ND	775	1650	"	"	"	"	"	n	
N-Nitrosodiphenylamine	ND	940	1650	"	"	"	"	"	н	
Pentachlorophenol	ND	845	4150	"	11	"	"	"	п	
Phenanthrene	ND	860	1650	"	"	"	"	"	н	
Phenol	ND	775	1650	"	"	"	"	"	n	
Pyrene	ND	430	1650	"	"	"	· ·	"	п	
Pyridine	ND	120	3350	"	11	"	u	11	п	
Surrogate: 2,4,6-Tribromophe	enol		100 %	19	-122	"	"	"	"	
Surrogate: 2, 7,0 11 toromophe Surrogate: 2-Fluorobiphenyl			93 %		-115	"	,,	"	"	
Surrogate: 2-Fluorophenol			76 %		-121	"	"	"	"	
Surrogate: Nitrobenzene-d5			84 %		-120	"	"	"	"	
Surrogate: Phenol-d6			79 %		-110	"	"	"	"	
Surrogate: Terphenyl-dl4			76 %		-137	"	n	"	"	

Wallace Kuhl & Associates- West Sacramento

Project: 12001 LA Grange Road Property CLS Work Order #: 20J0923

3050 Industrial Boulevard

Project Number: 12774.02

COC #:

West Sacramento, CA 95691 Project Manager: Matthew Taylor

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
S21-S24 (20J0923-29) Soil	Sampled: 10/15/20 09:09	Received	d: 10/15/20 14:	:00						QRL-8
1,2,4-Trichlorobenzene	ND	805	1650	μg/kg	5	2008446	10/16/20	10/19/20	EPA 8270C	
1,2-Dichlorobenzene	ND	820	1650	"	"	"	TT .	"	"	
1,3-Dichlorobenzene	ND	820	1650	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	805	1650	"	"	"	"	n	•	
2,3,4,6-Tetrachlorophenol	ND	1650	3350	"	11	**	"	11	n	
2,4,5-Trichlorophenol	ND	875	1650	"	"	"	"	Ħ	n	
2,4,6-Trichlorophenol	ND	905	1650	"	n	"	"	n	н	
2,4-Dichlorophenol	ND	830	1650	"	"	"	"	n	н	
2,4-Dimethylphenol	ND	970	1650	"	11	"	"	11	n .	
2,4-Dinitrophenol	ND	535	4150	"	"	"	"	11	n .	
2,4-Dinitrotoluene (2,4-DNT)	ND	1100	1650	"	"	"	"	"	"	
2,6-Dinitrotoluene (2,6-DNT)	ND	945	1650	"	"	"	· ·	"	"	
2-Chloronaphthalene	ND	845	1650	"	"	"	T T	"	"	
2-Chlorophenol	ND	810	1650	"	"	"	17	"	"	
2-Methylnaphthalene	ND	850	1650	"	"	"	"	"	"	
2-Methylphenol	ND	785	1650	"	"	"	· ·	"	"	
2-Nitroaniline	ND	945	4150	"	"	"	TT .	"	"	
2-Nitrophenol	ND	935	1650	"	"	"	"	"	"	
3 & 4-Methylphenol	ND	795	1650	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	450	3350	"	**	**	"	"	"	
3-Nitroaniline	ND	1040	4150	"	"	"	"	"	n	
4,6-Dinitro-2-methylphenol	ND	1290	4150	"	"	**	"	"	"	
4-Bromophenyl phenyl ether	ND	895	1650	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	840	1650	"	"	"	"	"	"	
4-Chloroaniline	ND	620	1650	**	**	"	"	"	n	
4-Chlorophenyl phenyl ether	ND	875	1650	"	"	"	"	"	"	
4-Nitroaniline	ND	1350	4150	**	"	"	n	"	"	
4-Nitrophenol	ND	1020	4150	11	"	"	"	n	"	
Acenaphthene	ND	875	1650	**	**	"	"	"	n	
Acenaphthylene	ND	880	1650	**	**	**	"	"	n	
Anthracene	ND	890	1650	"	"	"	"	"	н	

Wallace Kuhl & Associates- West Sacramento

Project: 12001 LA Grange Road Property

3050 Industrial Boulevard

Project Number: 12774.02 CLS Work Order #: 20J0923

COC #:

West Sacramento, CA 95691

Project Manager: Matthew Taylor

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
S21-S24 (20J0923-29) Soil	Sampled: 10/15/20 09:09	Received	l: 10/15/20 14:	:00						QRL-8
Benzo (a) anthracene	ND	1150	1650	μg/kg	5	2008446	"	10/19/20	EPA 8270C	
Benzo (a) pyrene	ND	1020	1650	"	"	"	"	"	п	
Benzo (b) fluoranthene	ND	925	1650	"	"	"	"	"	н	
Benzo (g,h,i) perylene	ND	800	1650	"	**	"	"	11	n	
Benzo (k) fluoranthene	ND	1020	1650	"	"	"	"	n	н	
Benzoic acid	ND	1500	4150	"	11	"	"	n	н	
Benzyl alcohol	ND	810	1650	"	**	"	"	n	н	
Bis(2-chloroethoxy)methane	ND	800	1650	"	"	"	· ·	n	н	
Bis(2-chloroethyl)ether	ND	805	1650	"	"	"	"	"	н	
Bis(2-chloroisopropyl)ether	ND	775	1650	"	"	"	"	11	н	
Bis(2-ethylhexyl)phthalate	ND	705	1650	"	"	**	"	11	н	
Butyl benzyl phthalate	ND	1010	1650	"	**	**	"	n	н	
Chrysene	ND	885	1650	"	"	"	"	n	н	
Dibenz (a,h) anthracene	ND	920	1650	"	"	"	"	"	н	
Dibenzofuran	ND	880	1650	"	**	"	"	"	н	
Diethyl phthalate	ND	880	1650	"	"	"	"	"	н	
Dimethyl phthalate	ND	835	1650	"	11	"	"	"	п	
Di-n-butyl phthalate	ND	855	1650	"	"	"	"	"	н	
Di-n-octyl phthalate	ND	815	1650	"	"	"	"	"	н	
Fluoranthene	ND	960	1650	"	"	"	· ·	"	п	
Fluorene	ND	895	1650	"	"	"	17	n	п	
Hexachlorobenzene	ND	865	1650	"	"	"	17	11	н	
Hexachlorobutadiene	ND	840	1650	"	"	"	"	"	n	
Hexachlorocyclopentadiene	ND	955	1650	"	"	"	"	n	п	
Hexachloroethane	ND	830	1650	"	"	"	17	"	п	
Indeno (1,2,3-cd) pyrene	ND	810	1650	"	"	"	**	11	н	
Isophorone	ND	785	1650	"	**	**	"	n	n	
Naphthalene	ND	835	1650	11	"	"	"	"	п	
Nitrobenzene (NB)	ND	825	1650	**	**	"	"	"	n	
N-Nitrosodimethylamine	ND	805	1650	**	**	**	"	"	n	
N-Nitrosodi-n-propylamine	ND	775	1650	"	"	"	"	"	n	

Wallace Kuhl & Associates- West Sacramento

Project: 12001 LA Grange Road Property

3050 Industrial Boulevard West Sacramento, CA 95691 Project Number: 12774.02 CLS Work Order #: 20J0923

Project Manager: Matthew Taylor

COC #:

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
S21-S24 (20J0923-29) Soil	Sampled: 10/15/20 09:09	Received	l: 10/15/20 14	:00						QRL-8
N-Nitrosodiphenylamine	ND	940	1650	μg/kg	5	2008446	n	10/19/20	EPA 8270C	
Pentachlorophenol	ND	845	4150	"	"	"	Ħ	"	"	
Phenanthrene	ND	860	1650	"	"	**	"	"	11	
Phenol	ND	775	1650	"	"	**	"	**	11	
Pyrene	ND	430	1650	"	"	**	Ħ	"	"	
Pyridine	ND	120	3350	"	11	"	11	"	n	
Surrogate: 2,4,6-Tribromop	henol		86 %	19	-122	"	u,	"	"	
Surrogate: 2-Fluorobipheny	l		78 %	30	-115	"	Ħ	"	"	
Surrogate: 2-Fluorophenol			66 %	25	-121	"	"	"	"	
Surrogate: Nitrobenzene-d5			71 %	23	-120	"	"	"	"	
Surrogate: Phenol-d6			66 %	10	-110	"	"	"	"	
Surrogate: Terphenyl-dl4			64 %	18	-137	"	Ħ	"	"	
S37-S40 (20J0923-48) Soil	Sampled: 10/15/20 10:39	Received	l: 10/15/20 14	:00						QRL-8
1,2,4-Trichlorobenzene	ND	805	1650	μg/kg	5	2008446	10/16/20	10/19/20	EPA 8270C	
1,2-Dichlorobenzene	ND	820	1650	"	"	"	"	"	**	
1,3-Dichlorobenzene	ND	820	1650	"	"	**	Ħ	"	"	
1,4-Dichlorobenzene	ND	805	1650	"	"	"	Ħ	"	"	
2,3,4,6-Tetrachlorophenol	ND	1650	3350	"	"	**	"	"	"	
2,4,5-Trichlorophenol	ND	875	1650	"	"	"	Ħ	"	"	
2,4,6-Trichlorophenol	ND	905	1650	"	"	**	Ħ	"	"	
2,4-Dichlorophenol	ND	830	1650	"	"	**	"	"	"	
2,4-Dimethylphenol	ND	970	1650	"	"	11	"	"	11	
2,4-Dinitrophenol	ND	535	4150	n	11	"	"	11	11	
2,4-Dinitrotoluene (2,4-DN	Γ) ND	1100	1650	**	"	"	**	11	"	
2,6-Dinitrotoluene (2,6-DN	Γ) ND	945	1650	ű	"	n	n	"	н	
2-Chloronaphthalene	ND	845	1650	"	"	"	17	"	п	
2-Chlorophenol	ND	810	1650	**	"	"	11	**	"	
2-Methylnaphthalene	ND	850	1650	"	"	"	**	"	"	
2 Wedly maphinatelic										

Wallace Kuhl & Associates- West Sacramento

Project: 12001 LA Grange Road Property

3050 Industrial Boulevard West Sacramento, CA 95691 Project Number: 12774.02 CLS Work Order #: 20J0923 COC #:

Project Manager: Matthew Taylor

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
S37-S40 (20J0923-48) Soil	Sampled: 10/15/20 10:39	Receive	d: 10/15/20 14:	:00						QRL-8
2-Nitroaniline	ND	945	4150	μg/kg	5	2008446	n	10/19/20	EPA 8270C	
2-Nitrophenol	ND	935	1650	"	"	"	n	n	**	
3 & 4-Methylphenol	ND	795	1650	"	"	"	n	"	"	
3,3'-Dichlorobenzidine	ND	450	3350	"	"	"	n	**	•	
3-Nitroaniline	ND	1040	4150	"	"	"	n	"	H	
4,6-Dinitro-2-methylphenol	ND	1290	4150	"	"	"	Ħ	"	"	
4-Bromophenyl phenyl ether	ND	895	1650	"	"	"	n	"	"	
4-Chloro-3-methylphenol	ND	840	1650	"	"	"	n	**	•	
4-Chloroaniline	ND	620	1650	"	"	"	"	"	n	
4-Chlorophenyl phenyl ether	ND	875	1650	"	"	"	n	n n	**	
4-Nitroaniline	ND	1350	4150	"	"	**	n .	"	**	
4-Nitrophenol	ND	1020	4150	"	"	"	n	**	*	
Acenaphthene	ND	875	1650	"	"	"	"	"	n	
Acenaphthylene	ND	880	1650	"	"	**	"	"	"	
Anthracene	ND	890	1650	"	"	**	"	"	n .	
Benzo (a) anthracene	ND	1150	1650	"	"	**	"	"	"	
Benzo (a) pyrene	ND	1020	1650	"	"	"	"	"	n	
Benzo (b) fluoranthene	ND	925	1650	"	"	"	n	"	**	
Benzo (g,h,i) perylene	ND	800	1650	"	"	**	"	"	"	
Benzo (k) fluoranthene	ND	1020	1650	"	"	**	"	"	n	
Benzoic acid	ND	1500	4150	"	"	"	"	"	n	
Benzyl alcohol	ND	810	1650	"	"	**	"	"	n	
Bis(2-chloroethoxy)methane	ND	800	1650	"	"	**	"	"	H .	
Bis(2-chloroethyl)ether	ND	805	1650	"	11	"	"	"	n	
Bis(2-chloroisopropyl)ether	ND	775	1650	"	11	"	"	11	н	
Bis(2-ethylhexyl)phthalate	ND	705	1650	"	11	"	"	**	н	
Butyl benzyl phthalate	ND	1010	1650	**	"	"	n	"	n .	
Chrysene	ND	885	1650	"	"	"	n	"	II .	
Dibenz (a,h) anthracene	ND	920	1650	**	"	"	n.	"	ii	
Dibenzofuran	ND	880	1650	"	"	"	n	"	"	
Diethyl phthalate	ND	880	1650	"	"	"	n	"	"	

Wallace Kuhl & Associates- West Sacramento

Project: 12001 LA Grange Road Property

3050 Industrial Boulevard

Project Number: 12774.02

CLS Work Order #: 20J0923

West Sacramento, CA 95691

Project Manager: Matthew Taylor

COC #:

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
S37-S40 (20J0923-48) Soil Sa	mpled: 10/15/20 10:39	Receive	d: 10/15/20 14:	00						QRL-8
Dimethyl phthalate	ND	835	1650	μg/kg	5	2008446	n	10/19/20	EPA 8270C	
Di-n-butyl phthalate	ND	855	1650	"	"	"	n	n	п	
Di-n-octyl phthalate	ND	815	1650	"	"	"	Ħ	"	n	
Fluoranthene	ND	960	1650	"	"	"	Ħ	n	"	
Fluorene	ND	895	1650	"	"	"	**	n	н	
Hexachlorobenzene	ND	865	1650	"	"	"	Ħ	11	n	
Hexachlorobutadiene	ND	840	1650	"	"	**	"	11	11	
Hexachlorocyclopentadiene	ND	955	1650	"	"	**	**	**	11	
Hexachloroethane	ND	830	1650	**	n	11	"	11	п	
Indeno (1,2,3-cd) pyrene	ND	810	1650	11	n	11	"	11	п	
Isophorone	ND	785	1650	"	"	**	"	11	11	
Naphthalene	ND	835	1650	"	"	**	**	**	п	
Nitrobenzene (NB)	ND	825	1650	**	n	11	"	TI .	п	
N-Nitrosodimethylamine	ND	805	1650	"	"	**	"	11	н	
N-Nitrosodi-n-propylamine	ND	775	1650	"	"	**	"	11	11	
N-Nitrosodiphenylamine	ND	940	1650	"	"	**	**	**	п	
Pentachlorophenol	ND	845	4150	"	n	11	"	п	п	
Phenanthrene	ND	860	1650	**	n	11	"	11	11	
Phenol	ND	775	1650	"	"	**	"	**	11	
Pyrene	ND	430	1650	"	n	11	**	11	п	
Pyridine	ND	120	3350	"	"	,,	n	11	11	
Surrogate: 2,4,6-Tribromopheno	l		94 %	19	-122	"	**	"	"	
Surrogate: 2-Fluorobiphenyl			99 %	30	-115	"	"	"	"	
Surrogate: 2-Fluorophenol			77 %	25	-121	"	"	"	"	
Surrogate: Nitrobenzene-d5			87 %	23	-120	"	"	"	"	
Surrogate: Phenol-d6			76 %	10	-110	"	"	"	"	
Surrogate: Terphenyl-dl4			76 %	18	-137	"	"	"	"	

Wallace Kuhl & Associates- West Sacramento

Project: 12001 LA Grange Road Property

3050 Industrial Boulevard

Project Number: 12774.02 CLS Work Order #: 20J0923

COC #:

West Sacramento, CA 95691

Project Manager: Matthew Taylor

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
S41-S44 (20J0923-53) Soil S	Sampled: 10/15/20 11:11	Received	l: 10/15/20 14:	00						QRL-8
1,2,4-Trichlorobenzene	ND	805	1650	μg/kg	5	2008446	10/16/20	10/19/20	EPA 8270C	
1,2-Dichlorobenzene	ND	820	1650	"	"	"	TT .	"	п	
1,3-Dichlorobenzene	ND	820	1650	"	"	"	"	"	н	
1,4-Dichlorobenzene	ND	805	1650	"	"	"	"	n	n	
2,3,4,6-Tetrachlorophenol	ND	1650	3350	"	**	**	"	"	н	
2,4,5-Trichlorophenol	ND	875	1650	"	"	"	"	"	н	
2,4,6-Trichlorophenol	ND	905	1650	"	n	"	"	n	н	
2,4-Dichlorophenol	ND	830	1650	"	"	"	"	n	н	
2,4-Dimethylphenol	ND	970	1650	"	"	"	"	n	п	
2,4-Dinitrophenol	ND	535	4150	"	"	"	"	n	п	
2,4-Dinitrotoluene (2,4-DNT)	ND	1100	1650	"	"	"	"	n	н	
2,6-Dinitrotoluene (2,6-DNT)	ND	945	1650	"	"	"	· ·	"	n	
2-Chloronaphthalene	ND	845	1650	"	"	"	T T	"	п	
2-Chlorophenol	ND	810	1650	"	"	"	17	11	п	
2-Methylnaphthalene	ND	850	1650	"	"	"	"	n	н	
2-Methylphenol	ND	785	1650	"	"	"	· ·	"	н	
2-Nitroaniline	ND	945	4150	"	"	"	TT .	"	п	
2-Nitrophenol	ND	935	1650	"	"	"	"	11	п	
3 & 4-Methylphenol	ND	795	1650	"	"	"	"	"	н	
3,3'-Dichlorobenzidine	ND	450	3350	"	**	**	"	"	н	
3-Nitroaniline	ND	1040	4150	"	"	"	"	"	п	
4,6-Dinitro-2-methylphenol	ND	1290	4150	"	"	**	"	"	н	
4-Bromophenyl phenyl ether	ND	895	1650	"	"	"	"	"	н	
4-Chloro-3-methylphenol	ND	840	1650	"	"	"	"	n	п	
4-Chloroaniline	ND	620	1650	**	**	"	"	n	н	
4-Chlorophenyl phenyl ether	ND	875	1650	"	"	"	"	"	н	
4-Nitroaniline	ND	1350	4150	**	**	**	"	"	n	
4-Nitrophenol	ND	1020	4150	11	"	"	"	n	п	
Acenaphthene	ND	875	1650	**	**	"	"	"	n	
Acenaphthylene	ND	880	1650	**	**	**	"	"	n	
Anthracene	ND	890	1650	"	**	**	"	"	**	

Wallace Kuhl & Associates- West Sacramento

Project: 12001 LA Grange Road Property CLS Work Order #: 20J0923

3050 Industrial Boulevard

Project Number: 12774.02

COC #:

West Sacramento, CA 95691

Project Manager: Matthew Taylor

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
S41-S44 (20J0923-53) Soil	Sampled: 10/15/20 11:11	Received	: 10/15/20 14:	00						QRL-8
Benzo (a) anthracene	ND	1150	1650	μg/kg	5	2008446	"	10/19/20	EPA 8270C	
Benzo (a) pyrene	ND	1020	1650	"	"	"	TT .	n	п	
Benzo (b) fluoranthene	ND	925	1650	"	"	**	"	"	11	
Benzo (g,h,i) perylene	ND	800	1650	"	"	**	n	**	"	
Benzo (k) fluoranthene	ND	1020	1650	"	**	**	**	"	п	
Benzoic acid	ND	1500	4150	"	"	**	"	11	п	
Benzyl alcohol	ND	810	1650	"	n	**	"	11	н	
Bis(2-chloroethoxy)methane	ND	800	1650	"	"	"	Ħ	**	n	
Bis(2-chloroethyl)ether	ND	805	1650	"	"	"	**	"	п	
Bis(2-chloroisopropyl)ether	ND	775	1650	"	"	"	"	"	п	
Bis(2-ethylhexyl)phthalate	ND	705	1650	"	"	**	n	"	n	
Butyl benzyl phthalate	ND	1010	1650	"	**	**	**	"	n	
Chrysene	ND	885	1650	"	"	11	"	"	n	
Dibenz (a,h) anthracene	ND	920	1650	"	"	**	"	n	n	
Dibenzofuran	ND	880	1650	"	"	**	"	"	n	
Diethyl phthalate	ND	880	1650	"	**	**	**	"	n	
Dimethyl phthalate	ND	835	1650	"	"	**	"	n	n	
Di-n-butyl phthalate	ND	855	1650	"	"	**	"	n	n	
Di-n-octyl phthalate	ND	815	1650	"	"	**	**	"	n	
Fluoranthene	ND	960	1650	"	"	**	**	"	**	
Fluorene	ND	895	1650	"	"	11	"	"	n	
Hexachlorobenzene	ND	865	1650	"	"	**	"	n	n	
Hexachlorobutadiene	ND	840	1650	**	**	**	"	"	**	
Hexachlorocyclopentadiene	ND	955	1650	"	"	11	**	"	n	
Hexachloroethane	ND	830	1650	"	"	11	"	"	n	
Indeno (1,2,3-cd) pyrene	ND	810	1650	**	**	**	"	"	"	
Isophorone	ND	785	1650	**	**	**	"	"	**	
Naphthalene	ND	835	1650	**	11	**	"	11	11	
Nitrobenzene (NB)	ND	825	1650	"	"	"	"	"	п	
N-Nitrosodimethylamine	ND	805	1650	"	"	"	"	"	н	
N-Nitrosodi-n-propylamine	ND	775	1650	"	"	"	n	**	11	

Wallace Kuhl & Associates- West Sacramento

Project: 12001 LA Grange Road Property

3050 Industrial Boulevard

Project Number: 12774.02 CLS Work Order #: 20J0923

West Sacramento, CA 95691

Project Manager: Matthew Taylor COC #:

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
S41-S44 (20J0923-53) Soil	Sampled: 10/15/20 11:11	Received	l: 10/15/20 14:	00						QRL-8
N-Nitrosodiphenylamine	ND	940	1650	μg/kg	5	2008446	n	10/19/20	EPA 8270C	
Pentachlorophenol	ND	845	4150	"	"	"	n	"	**	
Phenanthrene	ND	860	1650	"	"	"	n	п	"	
Phenol	ND	775	1650	"	"	**	n	n	•	
Pyrene	ND	430	1650	"	"	**	T T	n	Ħ	
Pyridine	ND	120	3350	11	11	11	17	"	п	
Surrogate: 2,4,6-Tribromoph	enol		117 %	19	-122	"	**	"	"	
Surrogate: 2-Fluorobiphenyl			124 %	30	-115	"	T T	"	"	QS-4
Surrogate: 2-Fluorophenol			96 %	25	-121	"	"	"	"	
Surrogate: Nitrobenzene-d5			110 %	23	-120	"	"	"	"	
Surrogate: Phenol-d6			96 %	10	-110	"	"	"	"	
Surrogate: Terphenyl-dl4			87 %	18	-137	"	"	"	"	

Wallace Kuhl & Associates- West Sacramento

Project: 12001 LA Grange Road Property

3050 Industrial Boulevard West Sacramento, CA 95691 Project Number: 12774.02

CLS Work Order #: 20J0923

Project Manager: Matthew Taylor

COC #:

CAM 17 Metals - Quality Control

			Reporting		Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2008485 - EPA 3050B											
Blank (2008485-BLK1)					Prepared: 1	10/16/20 Aı	nalyzed: 10	/19/20			
Barium	ND	0.57	1.0	mg/kg							
Beryllium	ND	0.10	1.0	11							
Cobalt	ND	0.20	1.0	**							
Chromium	ND	0.31	1.0	**							
Copper	ND	0.82	1.0	**							
Arsenic	1.09	0.77	2.0	**							
Selenium	1.40	0.21	5.0	"							
Molybdenum	ND	0.40	1.0	"							
Nickel	ND	0.49	1.0	"							
Cadmium	ND	0.31	1.0	**							
Silver	ND	0.76	1.0	**							
Antimony	ND	0.39	5.0	**							
Vanadium	ND	0.78	1.0	**							
Thallium	0.314	0.044	2.0	**							
Zinc	ND	0.39	1.0	**							
Lead	ND	1.2	5.0	**							
LCS (2008485-BS1)					Prepared: 1	10/16/20 Aı	nalyzed: 10	/19/20			
Barium	100	0.57	1.0	mg/kg	100		100	75-125			
Beryllium	104	0.10	1.0	**	100		104	75-125			
Cobalt	111	0.20	1.0	**	100		111	75-125			
Chromium	110	0.31	1.0	**	100		110	75-125			
Copper	107	0.82	1.0	11	100		107	75-125			
Arsenic	124	0.77	2.0	**	100		124	75-125			
Selenium	120	0.21	5.0	"	100		120	75-125			
Molybdenum	110	0.40	1.0	"	100		110	75-125			
Nickel	113	0.49	1.0	**	100		113	75-125			
Cadmium	118	0.31	1.0	**	100		118	75-125			
Silver	54.0	0.76	1.0	**	50.0		108	75-125			
Antimony	119	0.39	5.0	**	100		119	75-125			
Vanadium	107	0.78	1.0	**	100		107	75-125			
Thallium	117	0.044	2.0	**	100		117	75-125			

Wallace Kuhl & Associates- West Sacramento

Project: 12001 LA Grange Road Property

3050 Industrial Boulevard West Sacramento, CA 95691 Project Number: 12774.02 CLS Work Order #: 20J0923

COC #: Project Manager: Matthew Taylor

CAM 17 Metals - Quality Control

Analyte	Result	MDL	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2008485 - EPA 3050B											
LCS (2008485-BS1)					Prepared: 1	10/16/20 Aı	nalyzed: 10	/19/20			
Zinc	106	0.39	1.0	mg/kg	100		106	75-125			
Lead	117	1.2	5.0	**	100		117	75-125			
Matrix Spike (2008485-MS1)			Source: 20	J0935-01	Prepared: 1	10/16/20 Aı	nalyzed: 10	/19/20			
Barium	180	0.57	1.0	mg/kg	100	81.1	98	75-125			
Beryllium	102	0.10	1.0	**	100	0.165	102	75-125			
Cobalt	109	0.20	1.0	**	100	12.3	97	75-125			
Chromium	140	0.31	1.0	**	100	41.6	99	75-125			
Arsenic	120	0.77	2.0	**	100	7.41	113	75-125			
Copper	140	0.82	1.0	**	100	42.5	98	75-125			
Selenium	111	0.21	5.0	**	100	1.61	109	75-125			
Molybdenum	94.5	0.40	1.0	**	100	ND	95	75-125			
Nickel	134	0.49	1.0	**	100	32.3	102	75-125			
Cadmium	113	0.31	1.0	**	100	ND	113	75-125			
Silver	50.8	0.76	1.0	**	50.0	ND	102	75-125			
Antimony	48.3	0.39	5.0	**	100	ND	48	75-125			QM-5
Vanadium	175	0.78	1.0	**	100	77.6	98	75-125			
Thallium	113	0.044	2.0	**	100	1.07	112	75-125			
Zinc	171	0.39	1.0	**	100	62.8	108	75-125			
Lead	118	1.2	5.0	**	100	5.78	112	75-125			
Matrix Spike Dup (2008485-MSI	D1)		Source: 20	J0935-01	Prepared: 1	10/16/20 Aı	nalyzed: 10	/19/20			
Barium	181	0.57	1.0	mg/kg	100	81.1	99	75-125	0.6	30	
Beryllium	101	0.10	1.0	**	100	0.165	101	75-125	1	30	
Cobalt	109	0.20	1.0	**	100	12.3	97	75-125	0.5	30	
Chromium	140	0.31	1.0	**	100	41.6	99	75-125	0.1	30	
Copper	138	0.82	1.0	**	100	42.5	95	75-125	2	30	
Arsenic	122	0.77	2.0	**	100	7.41	115	75-125	1	30	
Selenium	112	0.21	5.0	**	100	1.61	110	75-125	1	30	
Molybdenum	94.1	0.40	1.0	**	100	ND	94	75-125	0.5	30	
Nickel	135	0.49	1.0	17	100	32.3	103	75-125	0.8	30	
Cadmium	116	0.31	1.0	**	100	ND	116	75-125	3	30	

Wallace Kuhl & Associates- West Sacramento

Project: 12001 LA Grange Road Property

3050 Industrial Boulevard

Project Number: 12774.02

CLS Work Order #: 20J0923

West Sacramento, CA 95691 Project Manager: Matthew Taylor

COC #:

CAM 17 Metals - Quality Control

			Reporting		Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2008485 - EPA 3050B											
Matrix Spike Dup (2008485-MSD1)			Source: 20	J0935-01	Prepared: 1	0/16/20 Aı	nalyzed: 10	/19/20			
Silver	48.8	0.76	1.0	mg/kg	50.0	ND	98	75-125	4	30	
Antimony	45.9	0.39	5.0	n	100	ND	46	75-125	5	30	QM-5
Vanadium	176	0.78	1.0	**	100	77.6	98	75-125	0.3	30	
Thallium	114	0.044	2.0	**	100	1.07	113	75-125	1	30	
Lead	118	1.2	5.0	**	100	5.78	113	75-125	0.1	30	
Zinc	163	0.39	1.0	"	100	62.8	100	75-125	5	30	
Batch 2008534 - EPA 7471A											
Blank (2008534-BLK1)					Prepared: 1	0/19/20 Aı	nalyzed: 10	/20/20			
Mercury	ND	0.0072	0.10	mg/kg							
LCS (2008534-BS1)					Prepared: 1	0/19/20 Aı	nalyzed: 10	/20/20			
Mercury	0.192	0.0072	0.10	mg/kg	0.208		92	75-125			
Matrix Spike (2008534-MS1)			Source: 20	J0828-03	Prepared: 1	0/19/20 Aı	nalyzed: 10	/20/20			
Mercury	0.279	0.0072	0.10	mg/kg	0.208	0.0348	117	75-125			
Matrix Spike Dup (2008534-MSD1)			Source: 20	J0828-03	Prepared: 1	0/19/20 Aı	nalyzed: 10	/20/20			
Mercury	0.253	0.0072	0.10	mg/kg	0.208	0.0348	105	75-125	10	25	

Wallace Kuhl & Associates- West Sacramento

Project: 12001 LA Grange Road Property

3050 Industrial Boulevard

Project Number: 12774.02

CLS Work Order #: 20J0923

West Sacramento, CA 95691

Project Manager: Matthew Taylor

COC #:

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

			Reporting		Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2008537 - General Prep											
Blank (2008537-BLK1)					Prepared: 1	10/19/20 A	nalyzed: 10	/20/20			
Hexavalent Chromium	ND	2.0	10	μg/kg							
LCS (2008537-BS1)					Prepared: 1	10/19/20 A	nalyzed: 10	/20/20			
Hexavalent Chromium	101	2.0	10	μg/kg	100		101	80-120			
LCS Dup (2008537-BSD1)					Prepared: 1	10/19/20 A	nalyzed: 10	/20/20			
Hexavalent Chromium	106	2.0	10	μg/kg	100		106	80-120	5	20	
Matrix Spike (2008537-MS1)			Source: 20	J0923-53	Prepared: 1	10/19/20 A	nalyzed: 10	/20/20			
Hexavalent Chromium	113	2.0	10	μg/kg	100	ND	113	75-125			
Matrix Spike Dup (2008537-MSD1)		Source: 20	J0923-53	Prepared: 1	10/19/20 A	nalyzed: 10	/20/20			
Hexavalent Chromium	144	2.0	10	μg/kg	100	ND	144	75-125	24	25	QM-

Wallace Kuhl & Associates- West Sacramento

Project: 12001 LA Grange Road Property

3050 Industrial Boulevard

Project Number: 12774.02

CLS Work Order #: 20J0923

West Sacramento, CA 95691

Project Manager: Matthew Taylor

COC #:

Metals by EPA 6000/7000 Series Methods - Quality Control

			Reporting		Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2008465 - EPA 3050B											
Blank (2008465-BLK1)					Prepared &	: Analyzed:	10/16/20				
Lead	ND	0.18	2.5	mg/kg							
Arsenic	ND	0.85	2.0	17							
Copper	ND	0.30	1.0	"							
LCS (2008465-BS1)					Prepared &	Analyzed:	10/16/20				
Lead	104	0.18	2.5	mg/kg	100		104	75-125			
Arsenic	104	0.85	2.0	n	100		104	75-125			
Copper	106	0.30	1.0	Ħ	100		106	75-125			
Matrix Spike (2008465-MS1)			Source: 20	J0923-01	Prepared &	Analyzed:	10/16/20				
Lead	87.4	0.18	2.5	mg/kg	100	6.61	81	75-125			
Arsenic	90.8	0.85	2.0	"	100	1.24	90	75-125			
Copper	192	0.30	1.0	Ħ	100	108	84	75-125			
Matrix Spike Dup (2008465-MSD1)			Source: 20	J0923-01	Prepared &	: Analyzed:	10/16/20				
Lead	86.3	0.18	2.5	mg/kg	100	6.61	80	75-125	1	30	
Arsenic	89.4	0.85	2.0	"	100	1.24	88	75-125	2	30	
Copper	193	0.30	1.0	"	100	108	85	75-125	0.7	30	
Batch 2008517 - EPA 3050B											
Blank (2008517-BLK1)					Prepared &	: Analyzed:	10/19/20				
Lead	ND	0.18	2.5	mg/kg							
Arsenic	ND	0.85	2.0	"							
Copper	ND	0.30	1.0	n							
Lead	ND	0.87	2.5	Ħ							

Wallace Kuhl & Associates- West Sacramento

Project: 12001 LA Grange Road Property

3050 Industrial Boulevard West Sacramento, CA 95691 Project Number: 12774.02 CLS Work Order #: 20J0923 COC #:

Project Manager: Matthew Taylor

Metals by EPA 6000/7000 Series Methods - Quality Control

			Reporting		Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2008517 - EPA 3050B											
LCS (2008517-BS1)					Prepared &	Analyzed:	10/19/20				
Lead	104	0.18	2.5	mg/kg	100		104	75-125			
Arsenic	107	0.85	2.0	"	100		107	75-125			
Copper	107	0.30	1.0	"	100		107	75-125			
Lead	104	0.87	2.5	n	100		104	75-125			
Matrix Spike (2008517-MS1)			Source: 20	J0923-34	Prepared &	Analyzed:	10/19/20				
Lead	104	0.18	2.5	mg/kg	100	23.2	81	75-125			
Arsenic	97.0	0.85	2.0	n	100	3.72	93	75-125			
Copper	181	0.30	1.0	n	100	95.9	85	75-125			
Lead	104	0.87	2.5	"	100	23.2	81	75-125			
Matrix Spike Dup (2008517-MSI	D1)		Source: 20	J0923-34	Prepared &	: Analyzed:	10/19/20				
Lead	114	0.18	2.5	mg/kg	100	23.2	91	75-125	9	30	
Arsenic	96.3	0.85	2.0	**	100	3.72	93	75-125	0.7	30	
Copper	190	0.30	1.0	**	100	95.9	94	75-125	5	30	
Lead	114	0.87	2.5	"	100	23.2	91	75-125	9	30	

Wallace Kuhl & Associates- West Sacramento

Project: 12001 LA Grange Road Property

3050 Industrial Boulevard West Sacramento, CA 95691 Project Number: 12774.02 CLS Work Order #: 20J0923

Project Manager: Matthew Taylor

COC #:

Organochlorine Pesticides by EPA Method 8081A - Quality Control

			Reporting		Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2008522 - LUFT-DHS G	CNV										
Blank (2008522-BLK1)					Prepared: 1	10/19/20 Aı	nalyzed: 10	/20/20			
Aldrin	ND	0.10	1.0	μg/kg							
alpha-BHC	ND	0.030	1.7	n							
beta-BHC	ND	0.34	1.7	**							
gamma-BHC (Lindane)	ND	0.27	1.7	**							
delta-BHC	ND	0.045	1.7	"							
Chlordane-technical	ND	2.7	3.3	"							
4,4´-DDD	ND	0.096	3.3	"							
4,4´-DDE	ND	0.058	3.3	"							
4,4′-DDT	ND	0.12	3.3	"							
Dieldrin	ND	0.050	1.0	**							
Endosulfan I	ND	0.053	1.7	**							
Endosulfan II	ND	0.11	3.3	**							
Endosulfan sulfate	ND	0.069	3.3	**							
Endrin	ND	0.15	3.3	**							
Endrin aldehyde	ND	0.17	3.3	**							
Heptachlor	ND	0.094	1.7	"							
Heptachlor epoxide	ND	0.055	1.7	n							
Methoxychlor	ND	0.22	17	n							
Mirex	ND	0.73	3.3	**							
Гохарһепе	ND	4.0	20	"							
Surrogate: Tetrachloro-meta-xylene	11.7			"	20.8		56	46-139			
Surrogate: Decachlorobiphenyl	25.9			"	20.8		125	52-141			
LCS (2008522-BS1)					Prepared:	10/19/20 Aı	nalyzed: 10	/20/20			
Aldrin	13.9	0.10	1.0	μg/kg	16.7		83	47-132			
gamma-BHC (Lindane)	14.3	0.27	1.7	"	16.7		86	56-133			
4,4'-DDT	22.8	0.12	3.3	"	16.7		137	46-137			
Dieldrin	17.3	0.050	1.0	"	16.7		104	44-143			
Endrin	19.1	0.15	3.3	"	16.7		115	30-147			
Heptachlor	14.7	0.094	1.7	"	16.7		88	33-148			
Surrogate: Tetrachloro-meta-xylene	13.9			"	20.8		67	46-139			

Wallace Kuhl & Associates- West Sacramento

Project: 12001 LA Grange Road Property

3050 Industrial Boulevard West Sacramento, CA 95691 Project Number: 12774.02 CLS Work Order #: 20J0923 COC #:

Project Manager: Matthew Taylor

Organochlorine Pesticides by EPA Method 8081A - Quality Control

Analyte	Result	MDL	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2008522 - LUFT-DHS G	CNV										
LCS (2008522-BS1)					Prepared:	10/19/20 A	nalyzed: 10	/20/20			
Surrogate: Decachlorobiphenyl	25.1			μg/kg	20.8		120	52-141			
LCS Dup (2008522-BSD1)					Prepared:	10/19/20 A	nalyzed: 10	/20/20			
Aldrin	12.8	0.10	1.0	μg/kg	16.7		77	47-132	8	30	
gamma-BHC (Lindane)	12.8	0.27	1.7	**	16.7		77	56-133	12	30	
4,4'-DDT	21.2	0.12	3.3	**	16.7		127	46-137	7	30	
Dieldrin	16.9	0.050	1.0	**	16.7		101	44-143	2	30	
Endrin	18.4	0.15	3.3	**	16.7		110	30-147	4	30	
Heptachlor	12.9	0.094	1.7	**	16.7		78	33-148	13	30	
Surrogate: Tetrachloro-meta-xylene	12.3			"	20.8		59	46-139			
Surrogate: Decachlorobiphenyl	24.9			"	20.8		120	52-141			
Matrix Spike (2008522-MS1)			Source: 20	J0923-14	Prepared:	10/19/20 A	nalyzed: 10	/20/20			QRL-8
Aldrin	14.8	0.51	5.0	μg/kg	16.7	ND	89	47-138			
gamma-BHC (Lindane)	15.0	1.3	8.5	Ħ	16.7	ND	90	38-144			
4,4'-DDT	12.4	0.60	17	**	16.7	ND	74	41-157			
Dieldrin	16.3	0.25	5.0	**	16.7	ND	98	46-155			
Endrin	16.7	0.75	17	**	16.7	ND	100	34-149			
Heptachlor	13.8	0.47	8.5	**	16.7	ND	83	36-155			
Surrogate: Tetrachloro-meta-xylene	17.1			"	20.8		82	46-139			
Surrogate: Decachlorobiphenyl	29.9			"	20.8		143	52-141			QS-
Matrix Spike Dup (2008522-MSD1	l)		Source: 20	J0923-14	Prepared:	10/19/20 A	nalyzed: 10	/20/20			QRL-8
Aldrin	12.9	0.51	5.0	μg/kg	16.7	ND	78	47-138	13	35	-
gamma-BHC (Lindane)	12.8	1.3	8.5	"	16.7	ND	77	38-144	15	35	
4,4'-DDT	18.3	0.60	17	"	16.7	ND	110	41-157	38	35	QR-
Dieldrin	15.3	0.25	5.0	"	16.7	ND	92	46-155	7	35	
Endrin	15.3	0.75	17	Ħ	16.7	ND	92	34-149	9	35	
Heptachlor	11.6	0.47	8.5	**	16.7	ND	70	36-155	17	35	
Surrogate: Tetrachloro-meta-xylene	15.9			"	20.8		76	46-139			
Surrogate: Decachlorobiphenyl	30.3			"	20.8		145	52-141			QS-4

Wallace Kuhl & Associates- West Sacramento

Project: 12001 LA Grange Road Property

3050 Industrial Boulevard West Sacramento, CA 95691 Project Number: 12774.02 CLS Work Order #: 20J0923 COC #:

Project Manager: Matthew Taylor

Analyte	Result	MDL	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2008446 - EPA 3545	1100011	A14.00									
Blank (2008446-BLK1)					Prepared: 1	10/15/20 Aı	nalyzed: 10	/19/20			
Acenaphthene	ND	175	330	μg/kg	1		•				
Acenaphthylene	ND	176	330	Ħ							
Anthracene	ND	178	330	Ħ							
Benzo (a) anthracene	ND	229	330	Ħ							
Benzo (b) fluoranthene	ND	185	330	Ħ							
Benzo (k) fluoranthene	ND	204	330	Ħ							
Benzo (g,h,i) perylene	ND	160	330	Ħ							
Benzo (a) pyrene	ND	203	330	Ħ							
Benzyl alcohol	ND	162	330	n							
Bis(2-chloroethoxy)methane	ND	160	330	n							
Bis(2-chloroethyl)ether	ND	161	330	Ħ							
Bis(2-chloroisopropyl)ether	ND	155	330	Ħ							
Bis(2-ethylhexyl)phthalate	ND	141	330	Ħ							
4-Bromophenyl phenyl ether	ND	179	330	Ħ							
Butyl benzyl phthalate	ND	202	330	Ħ							
4-Chloroaniline	ND	124	330	n							
2-Chloronaphthalene	ND	169	330	n							
4-Chlorophenyl phenyl ether	ND	175	330	Ħ							
Chrysene	ND	177	330	Ħ							
Dibenz (a,h) anthracene	ND	184	330	Ħ							
Dibenzofuran	ND	176	330	Ħ							
Di-n-butyl phthalate	ND	171	330	Ħ							
1,2-Dichlorobenzene	ND	164	330	Ħ							
1,3-Dichlorobenzene	ND	164	330	"							
1,4-Dichlorobenzene	ND	161	330	Ħ							
3,3'-Dichlorobenzidine	ND	90.0	670	Ħ							
Diethyl phthalate	ND	176	330	Ħ							
Dimethyl phthalate	ND	167	330	Ħ							
2,4-Dinitrotoluene (2,4-DNT)	ND	219	330	Ħ							
2,6-Dinitrotoluene (2,6-DNT)	ND	189	330	"							
Di-n-octyl phthalate	ND	163	330	"							
• •											

RPD

Wallace Kuhl & Associates- West Sacramento

Project: 12001 LA Grange Road Property

Source

3050 Industrial Boulevard

Project Number: 12774.02

CLS Work Order #: 20J0923

West Sacramento, CA 95691

2,4-Dinitrophenol

2-Methylphenol

3 & 4-Methylphenol

ND

ND

ND

Project Manager: Matthew Taylor

Spike

COC #:

%REC

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

Reporting

			Reporting		Spike	Source		/orch		MD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2008446 - EPA 3545											
Blank (2008446-BLK1)					Prepared: 1	10/15/20 A	nalyzed: 10	/19/20			
Pyridine	ND	24.0	670	μg/kg							
Fluoranthene	ND	192	330	"							
Fluorene	ND	179	330	**							
Hexachlorobenzene	ND	173	330	**							
Hexachlorobutadiene	ND	168	330	**							
Hexachlorocyclopentadiene	ND	191	330	**							
Hexachloroethane	ND	166	330	**							
ndeno (1,2,3-cd) pyrene	ND	162	330	"							
sophorone	ND	157	330	**							
2-Methylnaphthalene	ND	170	330	"							
Naphthalene	ND	167	330	**							
-Nitroaniline	ND	189	830	**							
-Nitroaniline	ND	208	830	**							
-Nitroaniline	ND	269	830	**							
Nitrobenzene (NB)	ND	165	330	**							
N-Nitrosodimethylamine	ND	161	330	**							
N-Nitrosodiphenylamine	ND	188	330	"							
N-Nitrosodi-n-propylamine	ND	155	330	"							
Phenanthrene	ND	172	330	"							
Pyrene	ND	86.0	330	"							
,2,4-Trichlorobenzene	ND	161	330	"							
2,3,4,6-Tetrachlorophenol	ND	330	670	"							
Benzoic acid	ND	300	830	n							
-Chloro-3-methylphenol	ND	168	330	"							
-Chlorophenol	ND	162	330	n							
,4-Dichlorophenol	ND	166	330	Ħ							
2,4-Dimethylphenol	ND	194	330	"							
l,6-Dinitro-2-methylphenol	ND	257	830	**							

830

330

330

107

157

159

Wallace Kuhl & Associates- West Sacramento

Project: 12001 LA Grange Road Property

3050 Industrial Boulevard West Sacramento, CA 95691 Project Number: 12774.02 CLS Work Order #: 20J0923

Project Manager: Matthew Taylor COC #:

			Reporting		Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2008446 - EPA 3545											
Blank (2008446-BLK1)					Prepared: 1	.0/15/20 Ar	nalyzed: 10	/19/20			
2-Nitrophenol	ND	187	330	μg/kg							
4-Nitrophenol	ND	204	830	**							
Pentachlorophenol	ND	169	830	**							
Phenol	ND	155	330	**							
2,4,5-Trichlorophenol	ND	175	330	**							
2,4,6-Trichlorophenol	ND	181	330	**							
Surrogate: 2-Fluorophenol	2520			"	2670		95	25-121			
Surrogate: Phenol-d6	2480			"	2670		93	10-110			
Surrogate: Nitrobenzene-d5	2510			"	2670		94	23-120			
Surrogate: 2-Fluorobiphenyl	2320			"	2670		87	30-115			
Surrogate: 2,4,6-Tribromophenol	2050			"	2670		77	19-122			
Surrogate: Terphenyl-dl4	2450			"	2670		92	18-137			
LCS (2008446-BS1)					Prepared: 1	0/15/20 Ar	nalyzed: 10	/19/20			
Acenaphthene	2540	175	330	μg/kg	2670		95	31-137			
1,4-Dichlorobenzene	2590	161	330	17	2670		97	19-116			
2,4-Dinitrotoluene (2,4-DNT)	2640	219	330	**	2670		99	28-109			
N-Nitrosodi-n-propylamine	2740	155	330	**	2670		103	41-126			
Pyrene	2330	86.0	330	**	2670		88	35-142			
1,2,4-Trichlorobenzene	2560	161	330	**	2670		96	38-117			
4-Chloro-3-methylphenol	2630	168	330	**	2670		99	26-122			
2-Chlorophenol	2730	162	330	"	2670		102	25-132			
4-Nitrophenol	2400	204	830	11	2670		90	11-124			
Pentachlorophenol	2620	169	830	**	2670		98	17-119			
Phenol	2570	155	330	**	2670		97	6-125			
Surrogate: 2-Fluorophenol	2710			"	2670		102	25-121			
Surrogate: Phenol-d6	2640			"	2670		99	10-110			
Surrogate: Nitrobenzene-d5	2670			"	2670		100	23-120			
Surrogate: 2-Fluorobiphenyl	2480			"	2670		93	30-115			
Surrogate: 2,4,6-Tribromophenol	2500			"	2670		94	19-122			
Surrogate: Terphenyl-dl4	2680			"	2670		101	18-137			

Wallace Kuhl & Associates- West Sacramento

Project: 12001 LA Grange Road Property

3050 Industrial Boulevard West Sacramento, CA 95691 Project Number: 12774.02 CLS Work Order #: 20J0923

Project Manager: Matthew Taylor COC #:

Analyte Batch 2008446 - EPA 3545 LCS Dup (2008446-BSD1) Acenaphthene 1,4-Dichlorobenzene 2,4-Dinitrotoluene (2,4-DNT) N-Nitrosodi-n-propylamine	2790 2700 2660 2800	MDL 175 161 219	330	Units μg/kg	Level Prepared: 1	Result	%REC	Limits	RPD	Limit	Notes
LCS Dup (2008446-BSD1) Acenaphthene 1,4-Dichlorobenzene 2,4-Dinitrotoluene (2,4-DNT) N-Nitrosodi-n-propylamine	2700 2660	161		uσ/kσ	Prepared: 1	0/15/20 4					
Acenaphthene 1,4-Dichlorobenzene 2,4-Dinitrotoluene (2,4-DNT) N-Nitrosodi-n-propylamine	2700 2660	161		uo/ko	Prepared: 1	0/15/20 4-					
1,4-Dichlorobenzene 2,4-Dinitrotoluene (2,4-DNT) N-Nitrosodi-n-propylamine	2700 2660	161		μσ/kσ		.U/13/2U AI	nalyzed: 10	/19/20			
2,4-Dinitrotoluene (2,4-DNT) N-Nitrosodi-n-propylamine	2660		220	46 M	2670		105	31-137	10	20	
N-Nitrosodi-n-propylamine		219	330	**	2670		101	19-116	4	27	
1 17	2800		330	**	2670		100	28-109	0.9	45	
		155	330	**	2670		105	41-126	2	38	
Pyrene	2300	86.0	330	**	2670		86	35-142	1	36	
1,2,4-Trichlorobenzene	2610	161	330	"	2670		98	38-117	2	23	
4-Chloro-3-methylphenol	2390	168	330	"	2670		90	26-122	10	33	
2-Chlorophenol	2840	162	330	TT.	2670		107	25-132	4	45	
4-Nitrophenol	2670	204	830	n	2670		100	11-124	10	45	
Pentachlorophenol	2430	169	830	u	2670		91	17-119	8	47	
Phenol	2710	155	330	**	2670		102	6-125	5	35	
Surrogate: 2-Fluorophenol	2830			"	2670		106	25-121			
Surrogate: Phenol-d6	2760			"	2670		104	10-110			
Surrogate: Nitrobenzene-d5	2750			"	2670		103	23-120			
Surrogate: 2-Fluorobiphenyl	2560			"	2670		96	30-115			
Surrogate: 2,4,6-Tribromophenol	2490			"	2670		94	19-122			
Surrogate: Terphenyl-dl4	2660			"	2670		100	18-137			
Matrix Spike (2008446-MS1)			Source: 20	J0728-01	Prepared: 1	.0/15/20 Ar	nalyzed: 10	/19/20			
Acenaphthene	2200	175	330	μg/kg	2670	ND	83	31-137			
1,4-Dichlorobenzene	2020	161	330	Ħ	2670	ND	76	28-104			
2,4-Dinitrotoluene (2,4-DNT)	2160	219	330	Ħ	2670	ND	81	28-105			
N-Nitrosodi-n-propylamine	2190	155	330	Ħ	2670	ND	82	41-126			
Pyrene	1520	86.0	330	11	2670	ND	57	35-142			
1,2,4-Trichlorobenzene	2020	161	330	Ħ	2670	ND	76	38-107			
4-Chloro-3-methylphenol	2340	168	330	Ħ	2670	ND	88	26-103			
2-Chlorophenol	2110	162	330	Ħ	2670	ND	79	25-102			
4-Nitrophenol	1140	204	830	Ħ	2670	ND	43	11-114			
Pentachlorophenol	755	169	830	u	2670	ND	28	17-109			
Phenol	2040	155	330	"	2670	ND	76	6-125			
Surrogate: 2-Fluorophenol	2410			"	2670		90	25-121			

Wallace Kuhl & Associates- West Sacramento

Project: 12001 LA Grange Road Property

3050 Industrial Boulevard West Sacramento, CA 95691 Project Number: 12774.02 CLS Work Order #: 20J0923 COC #:

Project Manager: Matthew Taylor

			Reporting		Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2008446 - EPA 3545											
Matrix Spike (2008446-MS1)			Source: 20	J0728-01	Prepared:	10/15/20 A	nalyzed: 10	/19/20			
Surrogate: Phenol-d6	2480			μg/kg	2670		93	10-110			
Surrogate: Nitrobenzene-d5	2460			"	2670		92	23-120			
Surrogate: 2-Fluorobiphenyl	2410			"	2670		90	30-115			
Surrogate: 2,4,6-Tribromophenol	2330			"	2670		87	19-122			
Surrogate: Terphenyl-dl4	2470			"	2670		92	<i>18-137</i>			
Matrix Spike Dup (2008446-MSD	1)		Source: 20	J0728-01	Prepared:	10/15/20 A	nalyzed: 10	/19/20			
Acenaphthene	2170	175	330	μg/kg	2670	ND	81	31-137	1	20	
1,4-Dichlorobenzene	2010	161	330	"	2670	ND	75	28-104	0.6	27	
2,4-Dinitrotoluene (2,4-DNT)	2120	219	330	**	2670	ND	79	28-105	2	45	
N-Nitrosodi-n-propylamine	2190	155	330	**	2670	ND	82	41-126	0.03	38	
Pyrene	1460	86.0	330	"	2670	ND	55	35-142	4	36	
1,2,4-Trichlorobenzene	2030	161	330	"	2670	ND	76	38-107	0.2	23	
4-Chloro-3-methylphenol	2320	168	330	**	2670	ND	87	26-103	1	33	
2-Chlorophenol	2110	162	330	**	2670	ND	79	25-102	0.2	45	
4-Nitrophenol	1470	204	830	**	2670	ND	55	11-114	25	45	
Pentachlorophenol	477	169	830	**	2670	ND	18	17-109	45	47	
Phenol	1970	155	330	"	2670	ND	74	6-125	3	35	
Surrogate: 2-Fluorophenol	1850			"	2670		69	25-121			
Surrogate: Phenol-d6	1880			"	2670		71	10-110			
Surrogate: Nitrobenzene-d5	1900			"	2670		71	23-120			
Surrogate: 2-Fluorobiphenyl	1880			"	2670		70	30-115			
Surrogate: 2,4,6-Tribromophenol	1850			"	2670		69	19-122			
Surrogate: Terphenyl-dl4	1900			"	2670		71	18-137			

Wallace Kuhl & Associates- West Sacramento Project: 12001 LA Grange Road Property

3050 Industrial Boulevard Project Number: 12774.02 CLS Work Order #: 20J0923 West Sacramento, CA 95691

COC #: Project Manager: Matthew Taylor

Notes and Definitions

QS-4	The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
QRL-8	The extract of this sample was dark and/or oily. Therefore, the sample was analyzed with a dilution and the reporting limit was raised for all target compounds.
QR-1	The RPD value for the sample duplicate or MS/MSD was outside of the QC acceptance limits due to matrix interference. QC batch accepted based on LCS and/or LCSD recovery.
QM-5	The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were within acceptance limits showing that the laboratory is in control and the data is acceptable.
J	Detected but below the Reporting Limit; therefore, result is an estimated concentration.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit (or method detection limit when specified)
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference

This is a "MDL Report", thus if the report denotes an "ND" for a particular analyte, it should be noted that the analyte was not detected at or above the MDL.

Wallact -	3050 Industrial Blvd. West Sacramento, CA 9569 Tel: 916:372-1434
and the second s	Fax: 916 372,2565

3050 Industrial Blvd. West Sacramento, CA 95691 Tel: 916:372.1434									Li	Lab No Pageot																												
	Fax: 916.3	72.2565																																				
WKA Carbon Cop	□Nes □No California EDF Report?											Chain-of-Custody Record and Analysis Request Project Manager (Hardcopy or PDF To): Matt Taylor																										
kbalasek@wallace											- Arter	-	-	_	and the same of			_	-	-	_			-		or		_										
dnakamoto@walla	1						17						V	VK.A	A E	me	ail A	ddre	988	m	itay	lor	gwa	llac	e-kı	hl.c	om	-		_		_	_	_				
Company / Addres	Recommended but not mandatory to complete this section. Sampling Company Log Code:											1	Analysis of Request															TAT										
Phone No.: see above	e No.: Fax No.:			Global ID:												9	900	7199	0108											12Hr 24 Hr			\$1					
Project Number: 12774:02	P.O. No.:		EDF Deliv	Deliverable To (Email Address):										Spend	9010	Method 6010B	Method	ng EPA Method 6018									1 3	48Hr				For Lab Use Only						
Project Name: 12001 LA Grange Road Property		Sampler Signature:											Dour S	A Me	EPA	A Me	1115	W.D.								1 3	0				9							
Project Address:		Samp		T	Container Preservative Matrix										1	A Me	10 10	using	G EF	1	Method 8270									73Hr	-			de	- 65			
Sample Designation		Date	Time	4-oz Jar	8-02-Jar	VOAs	500ml POLY	11 AMBER	EQUI.	NH3/NH4	Đ	lce	WATER	SOIL	1000	5000	LOGII MOSBOIC EN	5	Chitomann VI.(Total Lead using EPA Method 60108 CAM 17 Meese Edd Aemon stoochron	SVOCs FPA Method 8270	SVOCs FPA Me									1 WK 2WK	1			- E			
512	K6	10:15:20	732	Y			1000				100-00	X		X					N	X		200,790																
SI Kens	24	14181-	733	×		Т			T	T)		X		X	T					K	Ī		T									T						
13 2	.0)	10/15/2-	735	K		T	1		1	T		τ		K	1	1	T	7		X	T	T	T	T				T	T			T						
54/		14/15/12 -	738	X		T			T			7		×	T	T		T		K			Ī									T						
75		roliste-	744	鲁	x	T	Ť		1		T	×		X	T	1	110	1	17		1		T							П		T						- 1
82-22/ 22		14/11/10	752	16		T					T	\ <u>_</u>		×	1	Ħ	711		VI		17		T	Ī					Ħ			T						
((2		10/15/20	756	2	Contract of the last	T			T			X		×	T	1		V	Ħ		1	T	T									T						
28 /		10/15/20	802	T	×				T		İ	×		Je	T	7	11	1	1		1	T	Ī									T						
57,		1 dule	178	X		Ť			+	1	T	×		X	1		Ť			X	T	T	T	Ť			2	\top				Ť						
16-65/01	2	10/15/20	844	X								×		×					-	x												T						
City >		14/1/20	547	×								×		×						×																		
512/	1 4	10/13/20	854	X								*		7	1	1	Ţ			X								T				Γ						
Relinquished by:	Date Date Date	520 B57										Remarks: "(Including 2-Methylphenol, 3&4 Methylphenol, Pentachlorophenol, and 2,3,4,6-Tetracholorophenol) Please asto include in email: kgereghty@wallace-kuhl.com														Please												
Relinquished by:	Date (d) 15/20	Date Time Received by Laboratory:										200									Bill to: Wallace-Kuhl & Associates c/o WKA Contact and swilliams@wallace-kuhl com																	

West lite, at 9 and 10	Fax: 916.3												_		_							01	CCA.		•			1202	at asset	J A		1 - D	ness entos				
WKA Carbon Cop		es.								- [Ye		E	No	-	200	last	. 0.5	and	0.00	- /1	-	mini lima is	py o	MARKETINE	adalesiana	ACCRECATION	National Services	AND RESIDENCE AND ADDRESS.	Appendix house	nalys	iis r	eque	151		-	
kbalasek@wallace dnakamoto@walla			Cal	ifori	nia	EDF	Rep	ort	?						100	minimize.	-		_	_			-	aylor:		_		-		911		_	_				
unana merugapatan	rue Kurit.Com	2							J.ħ						F	1.2.30		21.534	90.0055		5.5	-						1,111,00	SP.L.F.A.	Т	Tree T						
Company / Addres	S:		Recommends Sampling						piete	this s	action	n:-			1	T		F	cs	-7	An	aly	sis	of R	equ	est		_	1 1	4	12Hr						
Phone No.:	Fax No.		Global ID		0										1		99.04	90	7.138	5010B	8								Н	+	24 Hr						
see above Project Number: 12774:02	P.O. No.:		EDF Deliv	rerab	le T	o (Er	nail i	Addr	ess)						-		1010B	using EPA Method sortub	Method	Pg	9 6000/7000										48Hr				Lab Use Only		
Project Name: 12001 LA Grange Re	and Droperty		Sampler Signature		K	~>				17	33						D04	A Me	EPA	A Me	Metho	270	2,2								72 kdr				Usa		
Project Address:	Ses Property	Sam	pling	T	4	nta	Color Right		Pr	eser	vat	ive	TN	latri	×		Marie I	4	nemg	G EP	PAN	973	8 po								72 Hr				Lab		
Sample				4-62 Jar	B-oz_Jar	125 M/POLY	Soom Pol. Y	11 AMBER	NO3	NaOH	FC (lce	ATER	SOIL	AUDin Japan EDA	t dans a	Mend	ropper	IV Hins	Total Lead using	CAM 17 Messis EPA Method	SVDCs EPA Method 8270	SVOCs EPA Method 8270								1 WK © 2WK				For		
Designation	1	Date	Time	A F	60	7 3	1 1/2	=	I	2 2	T	2	15	(d)	-	7	F .	-	_	×	0	05	do:	-	+		-	+	+-+	7	-	27/					
513	F	Contract of the last	253	-		+	+	Н	+	+		10	+	X	-11	#	+	+					H	+		\vdash			+	\dashv	-						
214 /213-	116	1=11544	828	>	Н	+	+	Н	4	+	+	X	1	ASSES.	+	4	+	+	-+	×	-		-	-	-		-+	-	++	+	-			_			
515		10/11/20	900	×		-	+-	Н	4	+		1	H	X	-11	₩	-	+	_	X				-	-		-4	4	1 4	-	_						
516 /		10/15/10	9.3	X		4	1		4	4	-	X	1	X	-11	1	1	1	4							Н	_	+	1	4	_						
517		infish =	846		X	_	1	Ш	4	4	1	ļ.,	L		1	1	11	V	1	4		1		\perp		Ш		4	\perp	4	_						
518 /217-	750	rulishe	8-18		×												Y	M	1			Y															
519)		14/1/10	856		×												M					A															
520/		relation	854		X											1	W	1				11															
325		5 - 1 1	909	×							Т		Π		Т			\neg		1	V		NI				W										
520 /	1	151611	911	×			j).					-000	ı		T	I					V		X														
	1-524	10/15/13	913	Ŋ				П	T		T		T	П	1	T		7			A		1														
Q 9/7	70.5	10/11/24	915	X		T		П		T	T		t		T	Ť	I				11		H					I									
Relinguisted by	Pap	/	Date 5.20	13	me	Rece	ived	by									tem			~ H	and the same of			1-748 V		er er er	LECT.	O to the	control					aroust	alesani	e se se se se	Dianes
Relinquished by:			Date			Rece	ived	by:							*(Including 2-Methylphenol, 3&4 Methylphenol, Pentachlorophenol, and 2,3.4,6-Tetracholorophenol) F asia include in email: kgereghty@wallace-kuhl.com																						
Relinquished by:			Date 10/15/20	10000		Rece	lved G	by L	abo	rator	y: (c	C												ns@w			hl ca	(1)									

3050 industrial Blvd

West Sacramento, CA 95691 Lab No _____ Page ______ of ____ Tel: 916 372 1434 Fax: 916.372.2565 Chain-of-Custody Record and Analysis Request WKA Carbon Copy addresses Yes. No Project Manager (Hardcopy or PDF To): Matt Taylor kbalasek@wallace-kuhl.com California EDF Report? WKA Email Address: mtaylor@wallace-kuhl.com dnakamoto@walface-kuhl.com TAT Analysis of Request Recommended but not mand story to complete this section Company / Address: Sampling Company Log Code: 12Hr sied above Crimmium VI using EPA Method 7199 Total Lead using EPA Method 6010B Phone No.: Fax No.: Global ID: Metas EPA Mehod 6000,7000 24 Hr see above see above Total Arsenic EPA Method 50108 For Lab Use Only Project Number: P.O. No.: EDF Deliverable To (Email Address): HOO3
NaOH
NH3NH4
HCI
NHATER
WATER
SOIL
SOIL
COP5 using EPA Method 8081 48Hr 12774.02 Project Name: Sampler Signature: 12001 LA Grange Road Property Container Project Address: Sampling 1.WK 125 MIPOLY 500ml POR 2WK CAMP 171 Sample Designation Date Time SES 10/11/10 526 10/11/4 Icci 527 1002 S2X 16/15/26 1004 1-15/6 = 1001 14/15/44 530 1034 14/15/200 1007 531 524-(32 1510 1009 5331 10 11 10 1011 533-536 10/15/20 1014 534 585 10/1/10 1016 556 10/11/24 1019 Relinquished by Time Received by: Date Remarks: 15:10 Time Received by: '(including 2-Methylphenol, 3&4 Methylphenol, Pentachlorophenol, and 2,3,4,6-Tetracholorophenol) Please Date aslo include in email: kgereghty@wallace-kuht.com Bill to: Wallace-Kuhl & Associates c/e. Relinquished by: Time Received by Laboratory: 10/15/20 1401 8 WKA Contact and swilliams@wallace-kuhl.com

3050 industrial Blvd. West Sacramento, CA 95691 Tel: 916.372.1434

Page 1 of 1

Lab No Fax: 916.372.2565 Chain-of-Custody Record and Analysis Request WKA Carbon Copy addresses Yes No kbalasek@wallace-kuhl com Project Manager (Hardcopy or PDF To): Matt Taylor California EDF Report? WKA Email Address: mtaylor@wallace-kuhl.com dnakamoto@wallace-kuhl.com TAT Analysis of Request Company / Address: Recommended but not mandatory to complete this section Sampling Company Log Code: 12Hr ee above Total Lead using EPA Method 60108 Global ID: Phone No.: Fax No.: see above sée above 24 Hr EDF Deliverable To (Email Address): Fotal Assenic EPA Method 60108 0 Project Number: P.O. No.: For Lab Use Only 12774.02 48Hr Project Name: Sampler Signature: 72 Hr 12001 LA Grange Road Property. Preservative | Matrix Project Address: Sampling Container 1 WK 125 MPOLY Soomi Pol." NHS/NHS 2WK Sample Designation Date Time 537 10/15/14 1540 538 Jicha 3 1034 537-840 -15/100 1641 541 45079 /941 64 14.5/143 LILI 1118 SMI 015 14 x 543 4 13 4010 544 Jes Dara Time Received by: Remarks: Date 105.10 *(including 2-Methylphenol, 3&4 Methylphenol, Pentachlorophenol, and 2,3,4,6-Tetracholorophenol) Please Time Received by: Relinquished by: asto include in email: kgereghty@wallace-kuhl.com Bill to: Wallace-Kuhl & Associates c/o Relinguished by: Time Received by Laboratory: 10115/10 1400 WKA Contact and swilliams@wallace-kuhl.com

America

ANALYTICAL REPORT

Eurofins TestAmerica, Sacramento 880 Riverside Parkway West Sacramento, CA 95605 Tel: (916)373-5600

Laboratory Job ID: 320-65647-1

Laboratory Sample Delivery Group: 12774.02

Client Project/Site: 12001 LA Grange Road Property

Revision: 1

For:

eurofins 🙀

River City Geoprofessionals Inc dba Wallac-Kuhl & Associates 3050 Industrial Blvd West Sacramento, California 95691

Attn: Matt Taylor

Cesar C Corter

Authorized for release by: 10/28/2020 10:01:53 AM

Cesar Cortes, Project Manager I (916)374-4316

Cesar.Cortes@Eurofinset.com

----- LINKS ------

Review your project results through Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

N

Table of Contents

			Certification Summary	Lab Chronicle	QC Association Summary	QC Sample Results	sotope Dilution Summary	Toxicity Summary	Client Sample Results	Detection Summary	Case Narrative	Definitions/Glossary	Table of Contents	Cover Page
17	16	15	14	13	12	9	σ	7	0)	Oi	4	ω	Ν	_

Definitions/Glossary

Client: River City Geoprofessionals Inc Job ID: 320-65647-1 Project/Site: 12001 LA Grange Road Property SDG: 12774.02

Qualifiers

Dioxin Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
E	Result exceeded calibration range.
G	The reported quantitation limit has been raised due to an exhibited elevated noise or matrix interference
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
q	The reported result is the estimated maximum possible concentration of this analyte, quantitated using the theoretical ion ratio. The measured ion ratio does not meet qualitative identification criteria and indicates a possible interference.

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit

MLMinimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present PQL **Practical Quantitation Limit**

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points RPD

Toxicity Equivalent Factor (Dioxin) TEF **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins TestAmerica, Sacramento

Case Narrative

Client: River City Geoprofessionals Inc Project/Site: 12001 LA Grange Road Property Job ID: 320-65647-1

SDG: 12774.02

Job ID: 320-65647-1

Laboratory: Eurofins TestAmerica, Sacramento

Narrative

Revision - October 28, 2020

TEQs now present.

Receipt

The samples were received on 10/15/2020 1:53 PM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 10.0° C.

Method 8290

The following sample exhibited elevated noise or matrix interferences for one or more analytes causing elevation of the detection limit (EDL): S21-S24 (320-65647-5). The reporting limit (RL) for the affected analytes has been raised to be equal to the EDL, and a "G" qualifier applied.

The concentration of one or more analytes associated with the following sample exceeded the instrument calibration range: S21-S24 (320-65647-5). These analytes have been qualified; however, the peaks did not saturate the instrument detector. Historical data indicate that for the isotope dilution method, dilution and re-analysis will not produce significantly different results from those reported above the calibration range.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Detection Summary

Client: River City Geoprofessionals Inc Project/Site: 12001 LA Grange Road Property

Lab Sample ID: 320-65647-5

Job ID: 320-65647-1

SDG: 12774.02

Client Sample ID: S21-S24

Analyte	Result	Qualifier	RL	EDL	Unit	Dil Fac	D	Method	Prep Type
2,3,7,8-TCDD	2.6		1.0	0.17	pg/g	1	₩	8290	Total/NA
1,2,3,7,8-PeCDD	18		5.2	0.60	pg/g	1	☼	8290	Total/NA
1,2,3,7,8-PeCDF	2.1	J	5.2	0.77	pg/g	1	₩	8290	Total/NA
2,3,4,7,8-PeCDF	2.8	J	5.2	0.79	pg/g	1	₩	8290	Total/NA
1,2,3,4,7,8-HxCDD	30		5.2	2.7	pg/g	1	₩	8290	Total/NA
1,2,3,6,7,8-HxCDD	380		5.2	2.4	pg/g	1	₩	8290	Total/NA
1,2,3,7,8,9-HxCDD	94		5.2	2.3	pg/g	1	₩	8290	Total/NA
1,2,3,4,7,8-HxCDF	20	G	6.8	6.8	pg/g	1	₩	8290	Total/NA
1,2,3,6,7,8-HxCDF	14	G	6.3	6.3	pg/g	1	₩	8290	Total/NA
2,3,4,6,7,8-HxCDF	8.2	G	6.6	6.6	pg/g	1	₩	8290	Total/NA
1,2,3,4,6,7,8-HpCDD	7400	EGB	26	26	pg/g	1	☼	8290	Total/NA
1,2,3,4,6,7,8-HpCDF	1400	GB	16	16	pg/g	1	₩	8290	Total/NA
1,2,3,4,7,8,9-HpCDF	62	G	19	19	pg/g	1	₩	8290	Total/NA
OCDD	67000	EGB	30	30	pg/g	1	₩	8290	Total/NA
OCDF	5200	ΕB	10	1.4	pg/g	1	₩	8290	Total/NA
Total TCDD	39	q	1.0	0.17	pg/g	1	₩	8290	Total/NA
Total TCDF	21	q	1.0	0.29	pg/g	1	₩	8290	Total/NA
Total PeCDD	150	q	5.2	0.60	pg/g	1	₩	8290	Total/NA
Total PeCDF	96		5.2	0.78	pg/g	1	₩	8290	Total/NA
Total HxCDD	1600		5.2	2.5	pg/g	1	₩	8290	Total/NA
Total HxCDF	1500	G	6.7	6.7	pg/g	1	₩	8290	Total/NA
Total HpCDD	13000	G B	26	26	pg/g	1	₩	8290	Total/NA
Total HpCDF	7500	G B	17	17	pg/g	1	₩	8290	Total/NA
2,3,7,8-TCDF - RA	2.4		1.0	0.21	pg/g	1	₩	8290	Total/NA

This Detection Summary does not include radiochemical test results.

Client Sample Results

Client: River City Geoprofessionals Inc Job ID: 320-65647-1
Project/Site: 12001 LA Grange Road Property SDG: 12774.02

Client Sample ID: S21-S24

Date Collected: 10/15/20 09:15 Date Received: 10/15/20 13:53

General Chemistry

Percent Moisture

Percent Solids

Analyte

Lab Sample ID: 320-65647-5

Matrix: Solid Percent Solids: 93.7

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	2.6		1.0	0.17	pg/g	₩	10/16/20 10:50	10/22/20 23:23	1
1,2,3,7,8-PeCDD	18		5.2	0.60	pg/g	₽	10/16/20 10:50	10/22/20 23:23	1
1,2,3,7,8-PeCDF	2.1	J	5.2	0.77	pg/g	₽	10/16/20 10:50	10/22/20 23:23	1
2,3,4,7,8-PeCDF	2.8	J	5.2	0.79	pg/g	₩	10/16/20 10:50	10/22/20 23:23	1
1,2,3,4,7,8-HxCDD	30		5.2	2.7	pg/g	₩	10/16/20 10:50	10/22/20 23:23	1
1,2,3,6,7,8-HxCDD	380		5.2	2.4	pg/g	₽	10/16/20 10:50	10/22/20 23:23	1
1,2,3,7,8,9-HxCDD	94		5.2	2.3	pg/g	₽	10/16/20 10:50	10/22/20 23:23	1
1,2,3,4,7,8-HxCDF	20	G	6.8	6.8	pg/g	₩	10/16/20 10:50	10/22/20 23:23	1
1,2,3,6,7,8-HxCDF	14	G	6.3	6.3	pg/g	₽	10/16/20 10:50	10/22/20 23:23	1
2,3,4,6,7,8-HxCDF	8.2	G	6.6	6.6	pg/g	₽	10/16/20 10:50	10/22/20 23:23	1
1,2,3,7,8,9-HxCDF	ND	G	7.0	7.0	pg/g	₽	10/16/20 10:50	10/22/20 23:23	1
1,2,3,4,6,7,8-HpCDD	7400	EGB	26	26	pg/g	₩	10/16/20 10:50	10/22/20 23:23	1
1,2,3,4,6,7,8-HpCDF	1400	G B	16	16	pg/g	₩	10/16/20 10:50	10/22/20 23:23	1
1,2,3,4,7,8,9-HpCDF	62	G	19	19	pg/g	₽	10/16/20 10:50	10/22/20 23:23	1
OCDD	67000	EGB	30	30	pg/g	₩	10/16/20 10:50	10/22/20 23:23	1
OCDF	5200	EB	10	1.4	pg/g	₽	10/16/20 10:50	10/22/20 23:23	1
Total TCDD	39	q	1.0	0.17	pg/g	₩	10/16/20 10:50	10/22/20 23:23	1
Total TCDF	21	q	1.0	0.29	pg/g	₩	10/16/20 10:50	10/22/20 23:23	1
Total PeCDD	150	q	5.2	0.60	pg/g	₩	10/16/20 10:50	10/22/20 23:23	1
Total PeCDF	96		5.2	0.78	pg/g	₩	10/16/20 10:50	10/22/20 23:23	1
Total HxCDD	1600		5.2	2.5	pg/g	₩	10/16/20 10:50	10/22/20 23:23	1
Total HxCDF	1500	G	6.7	6.7	pg/g	₩	10/16/20 10:50	10/22/20 23:23	1
Total HpCDD	13000	G B	26	26	pg/g	₩	10/16/20 10:50	10/22/20 23:23	1
Total HpCDF	7500	G B	17	17	pg/g	₩	10/16/20 10:50	10/22/20 23:23	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	72		40 - 135				10/16/20 10:50	10/22/20 23:23	1
13C-2,3,7,8-TCDF	86		40 - 135				10/16/20 10:50	10/22/20 23:23	1
13C-1,2,3,7,8-PeCDD	69		40 - 135				10/16/20 10:50	10/22/20 23:23	1
13C-1,2,3,7,8-PeCDF	79		40 - 135				10/16/20 10:50	10/22/20 23:23	1
13C-1,2,3,6,7,8-HxCDD	72		40 - 135				10/16/20 10:50	10/22/20 23:23	1
13C-1,2,3,4,7,8-HxCDF	92		40 - 135				10/16/20 10:50	10/22/20 23:23	1
13C-1,2,3,4,6,7,8-HpCDD	71		40 - 135				10/16/20 10:50	10/22/20 23:23	1
13C-1,2,3,4,6,7,8-HpCDF	75		40 - 135				10/16/20 10:50	10/22/20 23:23	1
13C-OCDD	63		40 - 135				10/16/20 10:50	10/22/20 23:23	1
Method: 8290 - Dioxins ar	nd Furans (HPG	C/HRMS)	.RA						
Analyte	•	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDF	2.4		1.0		pg/g		10/16/20 10:50	•	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDF	105		40 - 135				10/16/20 10:50	10/24/20 05:46	1

Eurofins TestAmerica, Sacramento

Analyzed

10/16/20 09:51

10/16/20 09:51

Prepared

RL

0.1

0.1

RL Unit

0.1 %

0.1 %

Result Qualifier

6.3

93.7

Dil Fac

Toxicity Summary

Client: River City Geoprofessionals Inc Project/Site: 12001 LA Grange Road Property

Client Sample ID: S21-S24

Job ID: 320-65647-1 SDG: 12774.02

Lab Sample ID: 320-65647-5

						WHO 20	10	
						ND = (0	
Analyte	Result	Qualifier	RL	EDL	Unit	TEF	TEQ	Method
2,3,7,8-TCDD	2.6		1.0	0.17	pg/g	1	2.6	8290
1,2,3,7,8-PeCDD	18		5.2	0.60	pg/g	1	18	8290
1,2,3,7,8-PeCDF	2.1	J	5.2	0.77	pg/g	0.03	0.063	8290
2,3,4,7,8-PeCDF	2.8	J	5.2	0.79	pg/g	0.3	0.84	8290
1,2,3,4,7,8-HxCDD	30		5.2	2.7	pg/g	0.1	3.0	8290
1,2,3,6,7,8-HxCDD	380		5.2	2.4	pg/g	0.1	38	8290
1,2,3,7,8,9-HxCDD	94		5.2	2.3	pg/g	0.1	9.4	8290
1,2,3,4,7,8-HxCDF	20	G	6.8	6.8	pg/g	0.1	2.0	8290
1,2,3,6,7,8-HxCDF	14	G	6.3	6.3	pg/g	0.1	1.4	8290
2,3,4,6,7,8-HxCDF	8.2	G	6.6	6.6	pg/g	0.1	0.82	8290
1,2,3,7,8,9-HxCDF	ND	G	7.0	7.0	pg/g	0.1	0.00	8290
1,2,3,4,6,7,8-HpCDD	7400	EGB	26	26	pg/g	0.01	74	8290
1,2,3,4,6,7,8-HpCDF	1400	GB	16	16	pg/g	0.01	14	8290
1,2,3,4,7,8,9-HpCDF	62	G	19	19	pg/g	0.01	0.62	8290
OCDD	67000	EGB	30	30	pg/g	0.0003	20	8290
OCDF	5200	EВ	10	1.4	pg/g	0.0003	1.6	8290
2,3,7,8-TCDF - RA	2.4		1.0	0.21	pg/g	0.1	0.24	8290
						WHO 20	10	
						ND = (0	
Analyte	Result	Qualifier	NONE	NONE	Unit	TEF	TEQ	Method
Total Dioxin/Furan TEQ					pg/g		190	TEQ

TEF Reference:

WHO 2010 = World Health Organization (WHO) 2010 TEF, Dioxins, Furans and PCB Congeners

Eurofins TestAmerica, Sacramento

4

9

10

12

14

15

16

Client: River City Geoprofessionals Inc Project/Site: 12001 LA Grange Road Property

Job ID: 320-65647-1 SDG: 12774.02

Method: 8290 - Dioxins and Furans (HRGC/HRMS)

Matrix: Solid Prep Type: Total/NA

			Perce	ent Isotope	Dilution Re	Percent Isotope Dilution Recovery (Acceptance Limits)	eptance Li	mits)	
		TCDD	TCDF	PeCDD	PeCDF	HxDD	HxCDF	HpCDD	HpCDF
Lab Sample ID	Client Sample ID	(40-135)	(40-135)	(40-135)	(40-135)	(40-135)		(40-135)	(40-135)
320-65647-5	S21-S24	72	86	69	79	72	92	71	75
320-65647-5 - RA	S21-S24		105						
LCS 320-422392/2-A	Lab Control Sample	72	90	71	80	72	92	69	81
LCSD 320-422392/3-A	Lab Control Sample Dup	75	91	71	82	73	93	70	79
MB 320-422392/1-A	Method Blank	73	90	68	78	72	94	67	80
			Perce	nt Isotope	Dilution Re	Percent Isotope Dilution Recovery (Acceptance Limits)	eptance Li	mits)	
		OCDD							
Lab Sample ID	Client Sample ID	(40-135)							
320-65647-5	S21-S24	63							
320-65647-5 - RA	S21-S24								
LCS 320-422392/2-A	Lab Control Sample	68							
LCSD 320-422392/3-A	Lab Control Sample Dup	67							
MB 320-422392/1-A	Method Blank	64							
Surrogate Legend									
TCDD = 13C-2,3,7,8-TCDD	CDD								
TCDF = 13C-2,3,7,8-TCDF	CDF								
PeCDD = 13C-1,2,3,7,8-PeCDD	8-PeCDD								
PeCDF = 13C-1,2,3,7,8-PeCDF	3-PeCDF								
HxDD = 13C-1,2,3,6,7,8-HxCDD	8-HxCDD								
HxCDF = 13C-1,2,3,4,7,8-HxCDF	7,8-HxCDF								
HpCDD = 13C-1,2,3,4,6,7,8-HpCDD	6,7,8-HpCDD								
HpCDF = 13C-1,2,3,4,6,7,8-HpCDF	3,7,8-HpCDF								
OCDD = 13C-OCDD									

 ∞

Eurofins TestAmerica, Sacramento

QC Sample Results

Client: River City Geoprofessionals Inc Job ID: 320-65647-1 Project/Site: 12001 LA Grange Road Property SDG: 12774.02

Method: 8290 - Dioxins and Furans (HRGC/HRMS)

Lab Sample ID: MB 320-4223 Matrix: Solid Analysis Batch: 425016							_	le ID: Method Prep Type: To Prep Batch:	otal/NA
	MB N								
Analyte	Result C	Qualifier	RL	EDL		D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		1.0	0.069			10/16/20 10:50	10/22/20 21:08	1
2,3,7,8-TCDF	ND		1.0	0.032			10/16/20 10:50	10/22/20 21:08	1
1,2,3,7,8-PeCDD	ND		5.0	0.11			10/16/20 10:50	10/22/20 21:08	1
1,2,3,7,8-PeCDF	ND		5.0	0.061			10/16/20 10:50	10/22/20 21:08	1
2,3,4,7,8-PeCDF	ND		5.0	0.062	pg/g		10/16/20 10:50	10/22/20 21:08	1
1,2,3,4,7,8-HxCDD	ND		5.0	0.090	pg/g		10/16/20 10:50	10/22/20 21:08	1
1,2,3,6,7,8-HxCDD	ND		5.0	0.080	pg/g		10/16/20 10:50	10/22/20 21:08	1
1,2,3,7,8,9-HxCDD	ND		5.0	0.075	pg/g		10/16/20 10:50	10/22/20 21:08	1
1,2,3,4,7,8-HxCDF	ND		5.0	0.091	pg/g		10/16/20 10:50	10/22/20 21:08	1
1,2,3,6,7,8-HxCDF	ND		5.0	0.084	pg/g		10/16/20 10:50	10/22/20 21:08	1
2,3,4,6,7,8-HxCDF	ND		5.0	0.088	pg/g		10/16/20 10:50	10/22/20 21:08	1
1,2,3,7,8,9-HxCDF	ND		5.0	0.093	pg/g		10/16/20 10:50	10/22/20 21:08	1
1,2,3,4,6,7,8-HpCDD	0.210 J		5.0	0.081	pg/g		10/16/20 10:50	10/22/20 21:08	1
1,2,3,4,6,7,8-HpCDF	0.165 J	l	5.0	0.030	pg/g		10/16/20 10:50	10/22/20 21:08	1
1,2,3,4,7,8,9-HpCDF	ND		5.0	0.035	pg/g		10/16/20 10:50	10/22/20 21:08	1
OCDD	2.07 J		10	0.061	pg/g		10/16/20 10:50	10/22/20 21:08	1
OCDF	0.370 J	1	10	0.070			10/16/20 10:50	10/22/20 21:08	1
Total TCDD	ND		1.0	0.069			10/16/20 10:50	10/22/20 21:08	1
Total TCDF	ND		1.0	0.032	pg/g		10/16/20 10:50	10/22/20 21:08	1
Total PeCDD	ND		5.0	0.11			10/16/20 10:50	10/22/20 21:08	1
Total PeCDF	ND		5.0	0.062			10/16/20 10:50	10/22/20 21:08	1

	MB	MB				
Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	73		40 - 135	10/16/20 10:50	10/22/20 21:08	1
13C-2,3,7,8-TCDF	90		40 - 135	10/16/20 10:50	10/22/20 21:08	1
13C-1,2,3,7,8-PeCDD	68		40 - 135	10/16/20 10:50	10/22/20 21:08	1
13C-1,2,3,7,8-PeCDF	78		40 - 135	10/16/20 10:50	10/22/20 21:08	1
13C-1,2,3,6,7,8-HxCDD	72		40 - 135	10/16/20 10:50	10/22/20 21:08	1
13C-1,2,3,4,7,8-HxCDF	94		40 - 135	10/16/20 10:50	10/22/20 21:08	1
13C-1,2,3,4,6,7,8-HpCDD	67		40 - 135	10/16/20 10:50	10/22/20 21:08	1
13C-1,2,3,4,6,7,8-HpCDF	80		40 - 135	10/16/20 10:50	10/22/20 21:08	1
13C-OCDD	64		40 - 135	10/16/20 10:50	10/22/20 21:08	1

5.0

5.0

5.0

5.0

0.090 pg/g

0.093 pg/g

0.081 pg/g

0.033 pg/g

ND

ND

0.460 J

0.165 J

Lab Sample ID: LCS 320-422392/2-A

Matrix: Solid

Total HxCDD

Total HxCDF

Total HpCDD

Total HpCDF

Analysis Batch: 425016							Prep Batch: 422392
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
2,3,7,8-TCDD	20.0	24.2		pg/g		121	60 - 138
2,3,7,8-TCDF	20.0	23.5		pg/g		117	56 - 158
1,2,3,7,8-PeCDD	100	112		pg/g		112	70 - 122
1,2,3,7,8-PeCDF	100	119		pg/g		119	69 - 134
2,3,4,7,8-PeCDF	100	122		pg/g		122	70 - 131
1,2,3,4,7,8-HxCDD	100	116		pg/g		116	60 - 138
1,2,3,6,7,8-HxCDD	100	117		pg/g		117	68 - 136

Eurofins TestAmerica, Sacramento

10/16/20 10:50 10/22/20 21:08

10/16/20 10:50 10/22/20 21:08

10/16/20 10:50 10/22/20 21:08

10/16/20 10:50 10/22/20 21:08

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Client: River City Geoprofessionals Inc

Job ID: 320-65647-1 Project/Site: 12001 LA Grange Road Property SDG: 12774.02

Method: 8290 - Dioxins and Furans (HRGC/HRMS) (Continued)

Lab Sample ID: LCS 320-422392/2-A

Matrix: Solid

Analysis Batch: 425016

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Prep Batch: 422392

_	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2,3,7,8,9-HxCDD	100	119		pg/g		119	68 - 138	
1,2,3,4,7,8-HxCDF	100	118		pg/g		118	74 - 128	
1,2,3,6,7,8-HxCDF	100	113		pg/g		113	67 - 140	
2,3,4,6,7,8-HxCDF	100	120		pg/g		120	71 - 137	
1,2,3,7,8,9-HxCDF	100	119		pg/g		119	72 - 134	
1,2,3,4,6,7,8-HpCDD	100	114		pg/g		114	71 - 128	
1,2,3,4,6,7,8-HpCDF	100	112		pg/g		112	71 - 134	
1,2,3,4,7,8,9-HpCDF	100	111		pg/g		111	68 - 129	
OCDD	200	213		pg/g		107	70 - 128	
OCDF	200	226		pg/g		113	63 - 141	

LCS LCS

Isotope Dilution	%Recovery	Qualifier	Limits
13C-2,3,7,8-TCDD	72		40 - 135
13C-2,3,7,8-TCDF	90		40 - 135
13C-1,2,3,7,8-PeCDD	71		40 - 135
13C-1,2,3,7,8-PeCDF	80		40 - 135
13C-1,2,3,6,7,8-HxCDD	72		40 - 135
13C-1,2,3,4,7,8-HxCDF	92		40 - 135
13C-1,2,3,4,6,7,8-HpCDD	69		40 - 135
13C-1,2,3,4,6,7,8-HpCDF	81		40 - 135
13C-OCDD	68		40 - 135

Lab Sample ID: LCSD 320-422392/3-A

Matrix: Solid

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Batch: 425016							Prep Ba	tch: 42	22392
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2,3,7,8-TCDD	20.0	23.4		pg/g		117	60 - 138	3	20
2,3,7,8-TCDF	20.0	24.3		pg/g		122	56 - 158	4	20
1,2,3,7,8-PeCDD	100	112		pg/g		112	70 - 122	0	20
1,2,3,7,8-PeCDF	100	118		pg/g		118	69 - 134	1	20
2,3,4,7,8-PeCDF	100	119		pg/g		119	70 - 131	2	20
1,2,3,4,7,8-HxCDD	100	121		pg/g		121	60 - 138	4	20
1,2,3,6,7,8-HxCDD	100	121		pg/g		121	68 - 136	3	20
1,2,3,7,8,9-HxCDD	100	121		pg/g		121	68 - 138	1	20
1,2,3,4,7,8-HxCDF	100	120		pg/g		120	74 - 128	2	20
1,2,3,6,7,8-HxCDF	100	115		pg/g		115	67 - 140	2	20
2,3,4,6,7,8-HxCDF	100	122		pg/g		122	71 - 137	1	20
1,2,3,7,8,9-HxCDF	100	120		pg/g		120	72 - 134	1	20
1,2,3,4,6,7,8-HpCDD	100	112		pg/g		112	71 - 128	2	20
1,2,3,4,6,7,8-HpCDF	100	118		pg/g		118	71 - 134	5	20
1,2,3,4,7,8,9-HpCDF	100	116		pg/g		116	68 - 129	5	20
OCDD	200	215		pg/g		107	70 - 128	1	20
OCDF	200	227		pg/g		114	63 - 141	1	20
LCSD	LCSD								

	LUJD	LUSD	
Isotope Dilution	%Recovery	Qualifier	Limits
13C-2,3,7,8-TCDD	75		40 - 135
13C-2,3,7,8-TCDF	91		40 - 135
13C-1,2,3,7,8-PeCDD	71		40 - 135

Eurofins TestAmerica, Sacramento

Page 10 of 18

10/28/2020 (Rev. 1)

QC Sample Results

Client: River City Geoprofessionals Inc
Project/Site: 12001 LA Grange Road Property

Job ID: 320-65647-1
SDG: 12774.02

Method: 8290 - Dioxins and Furans (HRGC/HRMS) (Continued)

Lab Sample ID: LCSD 320-422392/3-A

Matrix: Solid

Analysis Batch: 425016

Client Sample ID: Lab Control Sample Dup
Prep Type: Total/NA
Prep Batch: 422392

	LCSD	LCSD	
Isotope Dilution	%Recovery	Qualifier	Limits
13C-1,2,3,7,8-PeCDF	82		40 - 135
13C-1,2,3,6,7,8-HxCDD	73		40 - 135
13C-1,2,3,4,7,8-HxCDF	93		40 - 135
13C-1,2,3,4,6,7,8-HpCDD	70		40 - 135
13C-1,2,3,4,6,7,8-HpCDF	79		40 - 135
13C-OCDD	67		40 - 135

QC Association Summary

Client: River City Geoprofessionals Inc

Job ID: 320-65647-1 Project/Site: 12001 LA Grange Road Property SDG: 12774.02

Specialty Organics

Prep Batch: 422392

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-65647-5	S21-S24	Total/NA	Solid	8290	
320-65647-5 - RA	S21-S24	Total/NA	Solid	8290	
MB 320-422392/1-A	Method Blank	Total/NA	Solid	8290	
LCS 320-422392/2-A	Lab Control Sample	Total/NA	Solid	8290	
LCSD 320-422392/3-A	Lab Control Sample Dup	Total/NA	Solid	8290	

Analysis Batch: 425016

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-65647-5	S21-S24	Total/NA	Solid	8290	422392
MB 320-422392/1-A	Method Blank	Total/NA	Solid	8290	422392
LCS 320-422392/2-A	Lab Control Sample	Total/NA	Solid	8290	422392
LCSD 320-422392/3-A	Lab Control Sample Dup	Total/NA	Solid	8290	422392

Analysis Batch: 425585

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-65647-5 - RA	S21-S24	Total/NA	Solid	8290	422392

General Chemistry

Analysis Batch: 422338

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-65647-5	S21-S24	Total/NA	Solid	D 2216	

Lab Chronicle

Client: River City Geoprofessionals Inc Project/Site: 12001 LA Grange Road Property

Lab Sample ID: 320-65647-5

Matrix: Solid

Job ID: 320-65647-1

SDG: 12774.02

Client Sample ID: S21-S24

Date Collected: 10/15/20 09:15 Date Received: 10/15/20 13:53

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			422338	10/16/20 09:51	KDB	TAL SAC

Client Sample ID: S21-S24

Date Collected: 10/15/20 09:15

Lab Sample ID: 320-65647-5

Matrix: Solid

Date Received: 10/15/20 13:53 Percent Solids: 93.7

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	8290			10.19 g	20 uL	422392	10/16/20 10:50	FC	TAL SAC
Total/NA	Analysis	8290		1			425016	10/22/20 23:23	ALM	TAL SAC
Total/NA	Prep	8290	RA		10.19 g	20 uL	422392	10/16/20 10:50	FC	TAL SAC
Total/NA	Analysis	8290	RA	1			425585	10/24/20 05:46	ALM	TAL SAC

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

3

4

5

7

9

12

15

16

Accreditation/Certification Summary

Client: River City Geoprofessionals Inc

Job ID: 320-65647-1 Project/Site: 12001 LA Grange Road Property SDG: 12774.02

Laboratory: Eurofins TestAmerica, Sacramento

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pr	rogram	Identification Number	Expiration Date
California	Sta	ate	2897	01-31-22
The following analytes the agency does not o	'	ort, but the laboratory is	not certified by the governing authority.	This list may include analytes for which
~ ,				
Analysis Method	Prep Method	Matrix	Analyte	
Analysis Method D 2216		Matrix Solid	Analyte Percent Moisture	
•				

Method Summary

Client: River City Geoprofessionals Inc

Job ID: 320-65647-1 Project/Site: 12001 LA Grange Road Property SDG: 12774.02

Method	Method Description	Protocol	Laboratory
8290	Dioxins and Furans (HRGC/HRMS)	SW846	TAL SAC
TEQ	Total TEQ Calculation	Lab SOP	TAL SAC
D 2216	Percent Moisture	ASTM	TAL SAC
8290	Soxhlet Extraction of Dioxins and Furans	SW846	TAL SAC

Protocol References:

ASTM = ASTM International

Lab SOP = Laboratory Standard Operating Procedure

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Sample Summary

Client: River City Geoprofessionals Inc Project/Site: 12001 LA Grange Road Property Job ID: 320-65647-1

SDG: 12774.02

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
320-65647-5	S21-S24	Solid	10/15/20 09:15	10/15/20 13:53	

Wallace Kuni	3050 Indus West Sacr Tel: 916.37	amento, CA	95691												L	ab N	No							Page	9	_	_of	_(
10.500000000000000000000000000000000000	Fax: 916.3												_		_															_							
WKA Carbon Copy addresses							□Yes □No								Chain-of-Custody Record and Analysis Request																						
kbalasek@wallace	California EDF Report?										Project Manager (Hardcopy or PDF To): Matt Taylor WKA Email Address: mtaylor@wallace-kuhl.com																										
dnakamoto@walla													ľ	٧K	A Email	Ade	dres	s: r	mta	/lor@)Wa	Illace	e-ku	ıhl.c	om	_	_	_	_					_	_		
Company / Addres	Recommended but not mandatory to complete this section: Sampling Company Log Code:										7	_		_	An	alys	sis	of Re	qu	est					TAT												
see above Phone No.:	Fax No.:		Global ID:	:	_	_	_	-				_			+		11												12H	r	10	- D)	14	TI	17		
see above	see above		CONTRACTOR OF THE PARTY OF THE													10	11		П		1		1						24 H	łr	10	U)	1		. 1		
Project Number: 12774.02	P.O. No.:		EDF Deliv	rerab	le T	o (En	nail A	Addr	ess):							929	11												48H	r				Only			
Project Name: 12001 LA Grange Ro	oad Property		Sampler Signature: Kerry Pare stry									Method													72 H					For Lab Use Only							
Project Address:		Samp	oling		C	ontai	ner		T	ser	vájí	ve	Ma	atri	X	4	11		П											_				r La			
Sample Designation	,	Date	Time	4-oz Jar	8-oz Jar	125 M/POLY	500ml POLY	IAMBER	INO3	NA3/NH4	ICI	eo.	WATER	SOIL	4	Dioxins/Furans													2WK					F			
257		10/15/2020	44	4		-	- us	-	-		+	=	>	0)	1	6	+	+	\forall	+	+	+		+	+	+	+	Н		٦							
	1-524	10/15/2020	-	Н	X	+	+		\forall	+	+		+	+	1	7	++		\vdash	+	+	+		+	+	+	+	\forall		+				_		_	
	1-32 1	10/15/2020	11	H	X	+	+	\vdash	H	+	+	Н	+	+	+		+	\vdash	Н	+	+	+	-	+	+	+	+	Н		+	_						
523		10/15/2020	1	+	X	+	+	H	\forall	+	+	Н	+	+	V	1	++	+	H	+	+	+	-	\vdash	+	+	H	H		+						_	
524/		10/15/2020	715	H	X	+	+	H	Н	+	+	Н	+	+	-	*	++	\vdash	\vdash	+	+	+	-	\vdash	+	+	H	\vdash	_	+	_			_	_		_
				\mathbb{H}		+	+	H	Н	+	+	Н	\vdash	+	+	+	+	-	Н	+	+	+	-	H	+	+	\mathbb{H}	Н	_	1							
				Н		+	\perp		Н	+	-	Ц	\perp	4	1	1	+	-	Н	4	4	+	L	1.1	1			CHARM!	mu	IIII					_	_	
				Ш		_			Ц	1				1	1	1					1			111					$\Pi \Pi$	W		MW					
																								111	M		MW			W							
				П			Т		П	Т	Т	П	П	T	Т	T			П				Г	- 11	WW\					IIII	Miller	III in at i an		_			
				П					П			П		1	\top	T								3	20-6	3564	7 Cha	ain o	of Cus	stor	ay						
				Ħ	П	1	+	Н	\forall	+	†	Н	\Box	\dagger	†	\dagger			H	\forall	+	+	\vdash		-	-	тТ		-	T							
				H	Н	+	+		\forall	+		Н	\forall	†	+	+	+	t	\Box	+	+	+	1	\forall	+	+	\forall	\forall		+				_			
Relinquished by:			Date	Tir	me	Rece	ived	by:						_	_	F	Remarks:	77	_	-		- 1-		117	_ <	54		at	4			rt:	0 3	+			
																	4	ie	se	-0	A	03195		1		~7			,			•		1			
Relinquished by:	Date	Tir	me	Received by:									/D - Oay TAT																								
Relinquished by:	~		Date Jol 15/ Loca			Regg /D	Ned 15	byt	Boo	atory	3:5	- 53	E	TA	SA	C	WKA Con	llace	-Kuh	1 & A	sso	ciates			ıl co	m			in	T	110	20					

<u>ත</u>

15

<u>သ</u>

3

ဖ

 ∞

1

රා

4 I

o N

Client: River City Geoprofessionals Inc

Job Number: 320-65647-1 SDG Number: 12774.02

Login Number: 65647 List Source: Eurofins TestAmerica, Sacramento

List Number: 1

Creator: Oropeza, Salvador

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	